
PBloofI: An Enhanced Version of BloofI in

Recommender Systems

Zahra Farahi*, Ali Moeini, Ali Kamandi, Mahmood Shabankhah, Seyed Mohsen Hosseini

School of Engineering Science

College of Engineering

University of Tehran

Tehran, Iran

{zhr.farahi, moeini, kamandi, shabankhah, mohsen.hosseini72}@ut.ac.ir

Received: 2019/04/15 Revised: 2019/06/05 Accepted: 2019/07/16

Abstract—In this paper, we focus on improving the

performance of recommender systems. To do this, we propose

a new algorithm named PBloofI which is a kind of

hierarchical bloom filter. Actually, the Bloom filter is an

array-based technique for showing the items’ features. Since

the feature vectors of items are sparse, the Bloom filter

reduces the space usage by using the hashing technique. And

also, to reduce the time complexity we used the hierarchical

version of bloom filter which is based on B+ tree of order d.

Since Bloom filters can make a tradeoff between space and

time, proposing a new hierarchical Bloom filter causes a

remarkable reduction in space and time complexity of

recommender systems. To increase the accuracy of the

recommender systems we use Probabilistic version of

hierarchical Bloom filter. By measuring the accuracy of the

algorithm we show that the proposed algorithms not only

decrease the time complexity but also have no significant

effect on accuracy

Keywords—Recommender Systems, Bloom Filter,

Hierarchical Bloom filter

1. INTRODUCTION

Due to the explosive growth of information available on
the web, recommender systems have become widely
utilized by businesses such as Amazon, Netflix, MovieLens
or etc. Modeling the underlying mechanisms that predicts
users’ behavior on a particular item at a particular time
could be useful for increasing users’ engagement or selling
items or advertisement.

Recommendation models advise users on which items
they are more likely to be interested in. These models are
usually classified into three categories: collaborative
filtering, content based and hybrid recommender system.

Collaborative filtering [2, 31] recommends items to
users based on their historical interactions with other items.
Suppose someone has been rated some movies, then
collaborative filtering will predict his ratings to other
movies based on similarities between this user and other
users. Based on the users interactions collaborative filtering
could be categorized in to two fields: explicit (rating) or
implicit feedback (browsing history).

The technique that have been used in Collaborative
filtering can be classified into three categories:

A. Memory-based which uses user’s rating data to
compute the similarity between users or items.

B. Model-based which uses data mining techniques
such as dimension reduction to predict users’ rating
of unrated items.

C. Hybrid based which combine the other two
methods. In Table 1 an overview of these
techniques presented.

Content based methods [20, 23] recommends items
similar to those the user has liked in the past. These
methods use user profile or item description. The idea
behind this method is to use content of each item for
recommending purposes. Content of an object is a powerful
tool which can give us a lot of options. For instance, for a
movie we could consider the genre, the director, the actors
and the actress or other features.

Content based methods could handle cold start problem
better than collaborative filtering. By combining these two
methods hybrid methods [35] created which use both
content and collaborative information seek to get the best of
both worlds.

since Vectors would have a large length which led to
sparsity and it could increase processing time, in most cases
similarity process will not bring into account all available

TABLE 1. AN OVERVIEW ON COLLABORATIVE

FILTERING TECHNIQUE

Collaborative
Filtering

Techniques
Advantages Disadvantages

Memory-
Based

1: Easy
Implementation

2: New data can be
added simply

1:Depend to human
rating

2: Cold start

3: Sparsity

Model-Based

1: Prediction
Improvement

2: Handle sparsity
better

1: Information Loss
in dimension
reduction

Hybrid
1: Prediction
Improvement

1:Implementation
complexity

International Journal of Web Research, Vol. 1, No. 2, Autumn-Winter, 2018

18

features. On the other hand, using dimension reduction
techniques such as SVD, some information would be lost.
The consequence of information loss is a reduction in
accuracy.

 In this paper, in order to reduce processing time and
space in recommendation era, we use bloom filter (BF) [3,
5]. The concept of the bloom filter is introduced by Burton
H.Bloom in 1970 [3]. Over the time, BF has become more
interesting for researchers in computer science and today it
has applications in fields like distributed system [23],
database field, aggregate queries or ad-hoc iceberg queries
[12, 25].

The first Idea for checking the membership of an item in
a set is comparing the item with all members in that set.
Bloom filter is a technique of checking the membership of
an object in a set without any need to compare with all
items. The fundamental features of any bloom filter are:

 1) An array of n bits, needed for showing members and
it is initially 0.

2) A collection of hash functions.

3) A set ”S” of m key values.

The function of the bloom filter is such a way that for
any elements in set ”S” hashes it by k hash functions and
the output of these hash functions are indexes of the array
which have to set to1, it means that the element is a
member of S [22].

There are different types of bloom filter like Traditional
(Standard) Bloom Filter [3], Counting Bloom Filters [4],
Multi-level Bloom Filters [16], Depth Bloom filters (DBF)
which is one of the subsequences of multi-level bloom
filters [36]. There are different applications for bloom filter
like network applications in traffic measurement [19], data
storage [7], [29] or in social networks fields like social
tagging systems [6].

In order to decrease the time complexity, we have used
BloofI, which is a kind of hierarchical bloom filter based on
B+ tree. In BloofI all leaves are bloom filters of our objects
and also bloom filters just appear in leaves.

In each level, the parent is bitwise OR of its children,
that means each parent shows a set consists of just its
children, also, each parent represents a set which is the
union of all its children. When searching for a bloom filter
among all bloom filters, time order is O(N) but by using
bloofI it takes O(d logN) which d is a constant and shows
the tree’s order [10]. The order of the tree shows the
maximum capacity of each node. Because in B+ tree each
node can have d to 2d children.

In this paper, we introduce an enhanced version of the
bloom filter and suggest to use bloom filters in
recommendation systems. Actually, we will use the bloom
filter in order to show the features of items. In this way, it
causes a reduction in time and space. The structure of this
paper is as follow: in section II some basic definitions. In
section III related works in recommender system and
techniques used in them and also bloom filters- their type
and application- are mentioned we have explained a short
review of bloom filter and bloofI as background

knowledge. Section IV explains the proposed models are
explained, the BloofI and PBloofI. And finally, section VI
contains experiments results shown by charts.

2. BASIC DEFINITION

This section surveys related works in both fields,
recommender systems and bloom filters, their applications
and technologies. But in former some basic knowledge of
bloom filters are explained. Finally, the application of
bloom filter in recommender systems is illustrated in
details.

Definition 2.1. Bloom Filter: Bloom filter B consists of

1) a set of n items

2) is a hash function = 1…k

3) ́ : An array of m bits, initially all 0’s ;m << n

Bloom filters let us do fast query the membership of an
element. For illustration, consider checking the membership
of an item in a set. The basic solution is comparing that
item with all items in the set. Since sets are mostly huge so
it is needed to cache them to the disk. This process causes
some costs not only in the case of time but also in the case
of space. In this point of view, bloom filters are far more
advantageous since there is no need for comparing with all
items. actually, each element in the set will be hashed by k
hash functions, the output of each hash function is an index
in the array will set to 1 [5].

Also for query the membership of an item, the Bloom
filter hashes that item with the same hash functions, and
then If even an index in the array had been set to 0 it
confirms that for sure the element is not in the set otherwise
if all indexes have been set to 1 it will contend that the
element is in the set, but with an error probability that is
named “false positive error” [3, 22].

Example 2.1. consider the set S ={x, y, z} the goal is
answering the Query(w). Figure 1 shows the vector
contents.

Definition 2.2. Collison:

 [3]

So if we have k hash functions, by adding an item to the
set at most k bit of our array would set to 1. There are
different classes of hash function [9] but In our work, it has
no matter for using anyone. our concentration is on bloom
filter.

Definition 2.3. False positive error: The false positive
is a situation when the output indexes regarded an item is a
combination of output indexes of some other items [26]

Example 2.2. False positive error: When adding
element x to a set, it will set some bits to 1 and then by
adding element y to the set some other bits to will be set to
1. Now we want to query the membership of the item z in
the set. when we hash z, part of output indexes will set to 1,
by insertion of x and some others are set to 1 by insertion of
y so bloom filter acclaims that z is in the set while an error
has happened, this is what we say false positive error. The
example of the false positive error is illustrated in Figure 2.

PBloofI: An Enhanced Version of BloofI in Recommender Systems

19

Fig. 1. An example of bloom filter for representing a set S = {x,y,z}
which each item is hashed by three hash functions. K=3, m=18, N=3 and

item w is not involved in the set. It is obvious that one of w’s bit is 0 so can
be inferred that w is not in the set.

Fig. 2. Items x and y are inserted but z is not inserted. When checking
the membership of z the answer is ”Yes”. The false positive error has

occurred.

3. RELATED WORK

Recently, RS implementation in the Internet has
increased, which has facilitated its use in diverse areas such
as book, article, music, eLearning and etc. The most
common research papers are focused on movie
recommendation studies.

One of the first paper on this topic was NewsWeeder
[20]. In this method each user read an article and then rate it
(the ratings are 1 to 5). NewsWeeder learn the user’s
behavior based on their rating and suggest articles which
consider user will find it more interesting.

Through best of our knowledge [17] was the first paper
that used top-n recommendation task as an evaluation
metrics. In their paper they improved memory-based and
model-based methods to achieve better result and then they
merged those two methods. Based on their reported result
merging those methods could improve the predictions.

Using restricted Boltzmann machine in recommender
system was first suggested by Salakhutdinov [32]. In that
time Most of the existed approaches to collaborative
filtering could not handle very large data sets. They claimed
that their methods outperforms SVD models and it can
work on a data set which has more than 100 million
user/movie ratings.

Collaborative filtering methods find similar users or
items using user-item rating matrix so that the system can
show recommendations for users. However, most
approaches related to this approach are based on similarity
algorithms, such as cosine, Pearson correlation coefficient,
and mean squared difference. In [24] authors presents a new
user similarity model to improve the recommendation
performance on cold start.

User-based and item-based collaborative filtering
methods are two of the most widely used techniques in
recommender systems. While these algorithms are widely
used in industry they require a considerable amount of time
to find top-k similar neighbors (items or users) to predict
user preferences of unrated items. In [28] a Reversed
collaborative filtering presented, a rapid CF algorithm
which utilizes a k-nearest neighbor (k-NN) graph. This
method outperforms traditional user-based/item-based CF
algorithms in terms of both preprocessing time and query
processing.

For a certain user, user-based k-nearest-neighbor
(userkNN) collaborative filtering methods first identify a set
of similar users, and then recommend top-N items based on
what items those similar users have purchased. Similarly,
itembased k-nearest-neighbor (itemkNN) collaborative
filtering methods first identify a set of similar items for
each of the items that the user has purchased, and then
recommend top-N items based on those similar items [27].

The main idea of latent factor models is to factorize the
user-item matrix into (low-rank) user factors and item
factors that represent user tastes and item characteristics in
a common latent space. Pure Singular-Value-
Decomposition-based (PureSVD) matrix factorization
method was introduced by Cremonesi [14].

A weighted regularized matrix factorization (WRMF)
method applies a weighting matrix to differentiate the
contributions from observed purchase/rating activities and
unobserved ones.

“Tapestry” in [13] is one of the first recommender
systems which has been introduced and the word
collaborative filtering has been used for the first time. New
versions for hierarchical bloom filter have been introduced
in [10] and some application for hierarchical bloom filter in
networks are mentioned in [34] in case of payload attributes
in networks.

Also [36] have used hierarchical bloom filter in
VANET to combat the challenge of the large population,
rich content and low latency in VANET. A way to represent
item/users in recommender system are matrices, [18] has
used matrix factorization in recommender systems. In [37]
the Bloom filter has been used for ensuring the security of
data integration in wireless sensor networks when it is
deployed in an enemy environment.

[11] has used a protocol called ”summary cache” for
cache sharing. The structure of this summaries is bloom
filters. Moreover, Google Bigtable is an example of
distributed systems and [7] have used bloom filters to
improve searching in SSTable. Since the counter in
counting bloom filter are fixed to eliminate this defect.
Furthermore, in [8] the author has introduced an extension
of bloom filter named ”spectral bloom filter ”(SBF) which
tries to predict the multiplicity of items in a spectrum. SBF
uses a static counter to solve this drawback. The author in
[1] has introduced the Dynamic Count Filter which is made
if two fundamental vectors: a fixed size vector and a
dynamic vector named Overflow Vector that counts the
number of times that the elements in the first vector have
overflowed.

International Journal of Web Research, Vol. 1, No. 2, Autumn-Winter, 2018

20

A. BloofI

A hierarchical form of bloom filter named bloofI is
introduced in [10]. The basic construction of bloofI is a B+
tree. The leaves of the tree are the bloom filters and each
parent is bitwise OR of its children. So each parent is the
union of all its children and root shows a set which is
consist of all elements.

[10] has used bloofI to find all bloom filters which
match with a special bloom filter. when adding an item,
bloofI considers the distance between new item and all
other items. By this strategy, similar items will be siblings.

In B+ tree the number of each node’s children must be
between d and 2d, d is the order of the tree, except root that
can have at least 2 children. BloofI will be constructed by
sequential insertions. Figure 3 illustrates the structure of
bloofI.

Recently some researchers have used bloom filter in
recommender systems. [30] proposes to use bloom filter in
recommender systems. In bloofI there are some bloom filter
vectors constructing leaves, likewise, in recommender
systems, there are some items and users, and each item has
some features.

Moreover, any user has some preferences that we count
as user’s features.

Example 3.1. Constructing a feature vector: To
construct feature vectors, we have to assign each bit of a
vector to any feature. For instance, suppose our dataset are
movies. As shown in Table 2, each movie has features like
writer, director, actors, and genre. So we have to allocate a
bit to each possible feature.

Presume that features of a movie like X, are as follow:
In item X’s vector, related bits to d1, w1, c1, c10, c20, comedy,
drama will set to 1 and other bits will be 0. For any feature
that the related bit is set 1 is called an active feature and it
means that the item has that feature.

Fig. 3. A bloofI of order d=2. Internal nodes are bitwise OR of their
children.

TABLE 2. NOMENCLATURES

di Director i

wi Writer i

ci Actor i

Now it is time to convert vectors to bloom filters. In this
case, we treat each movie as a set and the features are
members of the set. The universal set is a set containing
features of all movies such as all writers, all directors. Since
vectors of features are sparse, this technique reduces space
complexity because of its compression in features
representation. To make bloom filters, we hash each active
feature by k hash functions.

To find similar items to a special item, the item should
be compared with all other items. For measuring distances,
Jaccard distance, Cosine distance or Hamming distance can
be used.

AND operation between two bloom filters shows the
intersection of them[30]. In our case, it shows that which
features are in common between two movies. Consider X is
a movie and we want to find similar movies, outcome
vector of AND operation between X and other movies
should be computed. After that, among resulted AND
vectors, anyone which is more similar will be suggested.

It is worth noticing that, two items are similar not only
in common features - common inserted features - but also
they are similar in features which both don’t have those
features - common missing features. To compute this
similarity, we can apply XNOR operation on bloom filters.
Actually, this technique not only counts common inserted
feature but also counts common missing features [30].

Both techniques, using AND or XNOR will reduce the
operation time. But their bottleneck is the comparison of an
item with all other items. We claim that the time can be
reduced more effectively. To do this we used a hierarchical
bloom filter (BloofI) instead of the standard bloom filter.
Since now presume that we want to suggest a list of k
similar items.

4. PROPOSED APPROACHES

In this section, we want to explain our two attempts to
aim at improving the performance of recommender
systems. Our first attempt is using BloofI in the
recommender system andthe second attempt is probabilistic
Bloom filter.

A. BloofI in recommender systems

As our first attempt, we used BloofI in recommender
systems. BloofI will be built by sequential insertions in a
B+ tree with an order of d. To make a BloofI tree, firstly
two bloom filters will be inserted and we define their parent
as the union of them, Then, other bloom filters will be
added. Consider that after each insertion parent has to be
updated.

When a node’s degree reaches to 2d the node will be
divided into two nodes. Consequently, half of the children
will resist as their own parent’s children and the other half
have to be added as a new node’s children. Now both
parents have to be updated and this updating will continue
up to reach the root. In this way, at each time we can admit
that till now the root is the union of all inserted bloom
filters. Figure. 3 is an example of BloofI in recommender
systems.

PBloofI: An Enhanced Version of BloofI in Recommender Systems

21

A novel accomplishment of this technique is using this
insertion method, we not only can suggest new items
similar to an item, but also classify all other leaves such that
more similar bloom filters will be as siblings.

In this technique, to construct a parent, we apply OR on
its children so when a bit of parent is one it means that at
least one of the children has that feature so it doesn’t matter
how many of children have that feature. Since it declines
the effect of the number of 1’s in a special bit of children,
somewhat it effects on our computations.

Example 4.1. To illustrate more, suppose that, we want to
add a new bloom filter Id14: [0110000001] to Figure. 4.
The Hamming similarity between Id14 and Id3 is equal to
2. On the other hand, the Hamming similarity between Id14
and Id2 is equal to 3. So the bloofI algorithm recognizes
that Id14 is more similar to Id2 while according to Figure.
4, Id14 is more similar to Id2. So we tried another attempt
which we are going to explain below.

 BloofI Algorithm

In proposed the algorithm we have four basic methods,
findIndex, insert, lookup and update in the following
paragraphs we describe these four methods.

The Algorithm 1 finds the best place for an item. The
inputs are a pointer to the tree’s root and item X. The best
palace for insertion is the index of a parent which its
children are more similar to the X. In this method, we
compute the Hamming distance between X and all root’s
children. Among all resulted vectors, anyone that has
greater cardinality, we choose that node to flow a path to
leaves. Repeatedly for newly chosen node we compare the
resulted vectors of Hamming distance and choose another
new node dawn in the path.

 To make a tree we use consequential insertion. In the
Algorithm 2, again the inputs are the pointer to the root and
item X. The first two bloom filters will be inserted and their
parent is their bitwise OR. Since now, to add any other
node we first run findIndex, to discover the best place for
inserting the node. when we insert a new item to the tree the
parent’s vector has to be updated by the Algorithm 3 and
also other parents till we reach the root. For updating the
parent, we use this method too.

In the update method, the input is the returned index by
the findIndex method and its output is an updated tree.

Finally, the most important method is Algorithm 4. This
is the main method which its inputs are item X, the item
which we want to find similar objects to it, an integer K and
a pointer to the tree’s root. The lookup method tries to make
a suggestion list of k most similar items to X. According to
the value of k and the number of leaves in sub-tree, two
different cases may happen (index.leaves is the number of
leaves).

 K ≤ index.leaves: in this case, we follow the path
down to the parent of leaves, now just among
children of this parent we choose k most similar
items for suggesting.

 K > index.leaves: in this case, as the difference
between k and d increases we have to stop the
process of following the path, in an upper level
and choose members of our suggestion list
among siblings and cousins.

In Figure. 5, the different relation between d and K are
exemplified.

B. PBloofI: a probabilistic version of bloofI

In BloofI, each node is bitwise OR of its children and when
a bit sets to 1 it doesn’t matter how many of the children
have that bit as an active feature. Anyway, by binary vectors,
we cannot find out this issue. Hence in order to bring into
account the number of children with a special active
feature, we propose to use probabilities.

Example 4.2. As shown in Figure 6, the leaves in
PBloofI are binary bloom filters but internal nodes (parents)
are different. The content of any bit is a fraction of children
which have one in that bit. So the maximum value of
parent’s bits can be 1.

Consider an internal node (a parent) X of size m < x1,
x2, … , xm >, and suppose that node has i children. To set a
value to x1, we have to count the number of children that
the first bit of them is 1. suppose in k number of children the

Fig. 4. When using bloofI, Id14:[0110000001] has to be inserted as a child
of Id2 while it is recognizable that Id14 is more similar to children of Id3.

Filled bits shows common bits between Id14 and any vector.

Fig. 5. A bloofI with d=2. Leaves are divided into two groups by dash
lines.The upper group is 3 < K ≤6 for and the lower group is for K ≤3.

International Journal of Web Research, Vol. 1, No. 2, Autumn-Winter, 2018

22

first bit is 1 so the value of the first bit of X will be

. By

this technique, we can bring into notice that how many
children have a special feature. If all children have 1 in the
same bit, the value of that bit in their parent would be 1. On
the other side, if none of them is 1 in a special bit, the value
of that parent’s bit will be 0.

To suggest a list of similar items to an item X, at first,
we check root’s children. because bits are not binary so we
cannot use AND operation to calculate distances so we
propose to use cosine distance. We compare all distances
and choose the node with the most appropriate value. Now

Algorithm 1 FindIndex Procedure

1: procedure FINDINDEX

2: Input: node: A Boolean array of length m

3: Input: root: The tree’s root. Before making tree
can be null

4: Output: index of an internal node. Return value is

the index of a parent where ”X” is more analogous to its

children

5: create a root node R
6: while R.child is not leaf do

7: z ← 0

8: create a new node T

9: T ← NULL

10: while R.child ≠ NULL do

11: T ← R.child

12: y = hammingDistance (X, T)

13: if y > z then

14: z ← y

15: index ← T

16: return index

17: else

18: z = y

19: z = y

Algorithm 2 Insert Procedure

1: procedure INDEX

2: Input: node X

3: Output: Pointer root

4: if root = Null then

5: root ← x

6: index ← findIndex(nodeX)

7: if index.childNumber > 2d then
8: create a new node newParent

9: newParent ← null

10: transport half of the children to the new parent

11: index.add(X)

12: update(index)

13: z ← y
14: return root

on, we continue a path to leaves by repeating these
operations for the new node. Figure. 6 is a simple but
illustrative example of PBloofI.

In this model, there is no change in insert and lookup
methods. Since in this model we use Cosine distance, we
will have a slight change in findIndex method but the inputs
and outputs are the same as previous algorithms.

C. Hash function

The hash functions that are used in implementing a
recommender system with bloom filters, must have special
characteristics. Conventional hash functions that are used in
cryptography try to minimize the probability of collision for
different items, but in recommender systems, the definition
of different items is something else. Two items may have

Fig. 6. Inserting bloom filter Id14:[0110000001] to the tree. Filled bits
shows the in internal node shows bits that will be affected by this insertion

and in leaves shows common inserted features

Algorithm 3 Update Procedure

1: procedure INDEX

2: Input: index: returned index by findIndex
algorithm

3: while index ≠NULL do

4: while index.child ≠ NULL do

5: index = OR(index:child)

6: index = index.parent

Algorithm 4 Lookup Procedure

1: procedure LOOKUP

2: Input: node: is a Boolean array of length m

3: Input: root: is the tree’s root. Before making tree

can be null

4: Input: K: is the number of items in suggested list

5: Output: suggested list: Return value is a list of k

most similar items to X

6: Index ← findindex(X)

7: If index.Leaves ≥ k then

8: while index.leaves < k do

9: index = index.parent

10: Return Suggested list

PBloofI: An Enhanced Version of BloofI in Recommender Systems

23

some different active feature, but since their similar active
features are more, we call them similar items. On the other
hand, in common case, these are different items in the hash
functions’ point of view. So, we need to map similar items
in recommender systems to the same buckets. So, the
family of Locality-sensitive hashing (LSH) is more suitable
in these systems.

Definition 4.1: LSH family

LSH family is a set of hash functions : U M
where each hash function maps elements from universe U
to a bucket , and satisfy the following two
conditions, where R is a positive threshold and is an
approximation factor:

Condition I: If , then with the
probability at least . In this relation, p and q are two

different items, and d is the distance function (e.g. Jaccard
or Cosine distance). In other word, the hash function should
map the similar objects (points) into the same bucket with
the probability at least .

Condition II: If , then with
the probability at most . In this relation, p and q are two
different items, and d is the distance function. In other
word, it is expected that the hash function does not map the
different items into the same bucket.

Notice that we interested in hash functions where
 .

Proposition 4.1: Assume that two items are
mapped into two Bloom filters . Also assume that k
different LSH hash function is used in this mapping.
Equation (1) shows the probability of matching exactly i
hash function, shown by is:

 (

)

 (1)

Proposition 4.2: Assume that two items are
mapped into two Bloom filters . Also assume that k
different LSH hash function is used in this mapping. If we
use Jaccard similarity measure and indicates
Jaccard distance between x and y, (2) shows the expected
value of similarity between :

 ∑

 (2)

Figure 7 shows the accuracy (according to similarity
equation derived in proposition 4.2., for different values of
k, and also the number of items that mapped into the same
bloom filter. As we expect, the accuracy will decrease when
we increase the number of hash functions, but the number
of items that mapped to a bloom filter will decrease. In this
example, we supposed that the size of bloom filter is m bit,
and the total number of items is 1000. In this case, the value
of is an ideal choice. For larger values of k, the
accuracy will decrease, but the average number of items in
each bloom filter does not decrease.

5. EXPERIMENT

In this paper, we have used dataset “ hetrec2011-
movielens 2k” available on
“https://grouplens.org/datasets/hetrec-2011/”. In Table 3
details about Data set information can be reviewed.

To construct the feature vectors, we defined a Boolean
array. Then we allocated the first 20 bits to genres such that
each bit belongs to a genre, and then allocate the next bits to
screenwriters and kept doing this allocation for other
features. In this way, the length of the feature vector will be
112537.

Since we use bloom filters there is no need for feature
selection. Consequently, the proposed methods are
supposed to be trustworthy. In these test, we took the list
produced by vector model as the standard list. In the vector
model, the vector of features will not convert to bloom filter
and by computing the Hamming distances the list will be
created.

To check the loyalty of methods, we had compared the
suggested list for l= 100 with the output list of the vector
model. It is supposed that items in both lists have to be in
common. To compute the accuracy of our models, we have
used the (3). Items which exist in both the standard list and
our list, we define as True Positive(TP). Also, (3) is the
number of items in the suggestion list.

 (3)

Now consider fp as the probability of false positive
error, k as the number of hash functions, m as the length of
the array and finally n as the number of elements in the set.
Suppose all n elements have been inserted. Equation (4)
indicates the probability for a zero bit after all insertions.

 (4)

Obviously, (5), which is complementary of (4), shows
the probability of a bit 1 after all insertions.

TABLE 3. DATASET OVERVIEW

Dataset #users #movies #screenwriters #tags #genres

ML2K 2113 10195 4060 13222 20

Fig. 7. The effect of k on the accuracy and number of items that mapped
into the same bloom filter.

80 74 72 71 70 69 69 68 68

100

11.1
2.7 1.19 0.79 0.79 1.19 2.7

11.1

1 2 3 4 5 6 7 8 9

Accuracy # item/bloom filter

International Journal of Web Research, Vol. 1, No. 2, Autumn-Winter, 2018

24

 (5)
Finally, for computing false positive error fp , consider

(6)

(6)[28]

As bloom filters are showing sets, we can use the set’s
operation on bloom filters. assume we have two bloom
filters BFa and BFb which are the representations of sets Sa
and Sb.

To show the union of these two sets we have to apply
bitwise OR on their bloom filters. Bitwise OR on bloom
filters can be applied under two conditions:

1) both bloom filters should be in the same size

2) the number of hashed functions applied on both of
them should be equal and also same hash functions have to
be used [17].

Suppose n is the number of all features. hence, it is also
the length of the feature vectors. And suppose nmax is the
number of active features of a vector with maximum active
features. Also, suppose X is an Item with nmax. we claim
that X is our worst case since it causes the maximum false
positive error. Again consider the (6), the replication of n
with nmax results in (8), Obviously, it proves our claim [26].

 (8)

To best describe the performance of each method, we
chose 20 random items and prepared a suggestion list for
each of them. In the end, we used a box plot to compare the
performance of all suggested algorithms.

Figure 8. shows the accuracy comparison between all
methods, the bloofI, PBloofI and finally the AND method
which does bitwise AND on a random item and all other
items, and suggests items with grater AND vector
cardinality(AND method is introduced in [30]). This figure
shows that all three algorithms have somehow the same
accuracy level.

Fig. 8. The comparison of three algorithms in case of suggesting a list of

100 items.

Also, the comparison between the time complexity of
methods is shown in Figure 9. This figure shows a
remarkable difference in the order of time complexity
between newly proposed algorithms and the former one. So,
we can say that the algorithms will not decrease the
accuracy while they decrease the time complexity.

Another way to measure the quality of a
recommendation system is Hit Rate (HR) which is defined
as follows (9):

 (9)

where #users is the total number of users, and #hits is the
number of users whose item in the testing set is
recommended (i.e., hit) in the size-N recommendation list.
In the Table 4 the comparison of some of these algorithms
on ML10M could be seen. Note that in this table the N is
equal to 10.

Columns corresponding to parametrs a and b present the
parameters for the corresponding method. For methods
itemkNN and userkNN, the paramesters are number of
neighbors. For method PureSVD, the parameters are the
number of singular values and the number of iterations
during SVD. For method WRMF, the parameters are the
dimension of the latent space and the weight on purchases
[27].

6. CONCLUSION

Recommender systems represent items by a vector of
features. Mostly, features are in an extended range, while

TABLE 4. COMPARISON OF TOP-N RECOMMENDATION

ALGORITHMS

method Parameter a Parameter b HR

itemkNN 20 - 0.238

userkNN 50 - 0.303

pureSVD 170 10 0.274

WRMF 100 2 0.306

Fig. 9. The comparison of time complexity between three different
algorithms. (the unit of time is second)

PBloofI: An Enhanced Version of BloofI in Recommender Systems

25

each item has a small number of those features. As a result,
showing items by vectors, the result vectors are sparse. This
sparsity causes an increase in time and space cost. There are
some methods that by selecting more effective features try
to decrease the sparseness. Since some features are ignored,
the accuracy will decrease.

In this paper, we have focused on two important issue:

1) reducing time complexity.

2) increasing the accuracy.

Bloom filters can be used for representing items in
lower space. Since bloom filter uses hashing functions, the
accuracy will have just a slight change. So bloom filters can
be a good choice for item representation in order of
reduction in time and space costs. Only representing items
by bloom filters is not efficient and we have to choose a
methodology for comparing bloom filters in order of
finding similar items. In an earlier method, a special bloom
filter had to be compared with all other bloom filters. which
is not time-consuming.

Making some changes in bloofI can cause a significant
improvement in accuracy. A way of these changes is using
the probability of happening 1 in each index of children.
Since using bloom filter in recommender systems is a new
idea, it seems that be a good idea for future researches. We
have just examined bloofI, but there are other types of
bloom filters. so experimenting other types of bloom filters
is future work. Also, we have used static data, while in the
network there are dynamic data too. Other future
experiments can be defined as experimenting with different
distance methods, analyzing the effect of different hash
functions on results.

REFERENCES

[1] Aguilar-Saborit, J., Trancoso, P., Muntes-Mulero, V., & Larriba-
Pey, J. (2006). Dynamic count filters. Acm Sigmod Record, 35(1),
26-32.

[2] Billsus, D., & Pazzani, M. J. (1998). Learning collaborative
information filters. In Icml, 98, 46–54.

[3] Bloom, B. H. (1970). Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7), 422–426.

[4] Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., &
Varghese, G. (2006). An improved construction for counting bloom
filters. In European Symposium on Algorithms, pp. 684–695.
Springer.

[5] Broder, A., Mitzenmacher, M., & Broder, A. (2002). Network
applications of bloom filters: A survey. Internet Mathematics. 1(4),
485-509.

[6] Cantador, I., Bellogın, A., & Vallet, D. (2010). Content-based
recommendation in social tagging systems. In Proceedings of the
fourth ACM conference on Recommender systems (pp. 237–240).
ACM.

[7] Chang, F., Dean, J,. Ghemawat, S,. Hsieh, W. C., Wallach, D. A.,
Burrows, M., Chandra, T,. Fikes, A., & Gruber, R. E. (2008).
Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2), 4.

[8] Cohen, S., & Matias, Y. (2003). Spectral bloom filters. In
Proceedings of the 2003 ACM SIGMOD international conference
on Management of data (pp. 241–252). ACM.

[9] Coron, J., Dodis, Y., Malinaud, C., & Puniya, P. (2005). Merkle-
damgard revisited: How to construct a hash function. In Annual
International Cryptology Conference (pp. 430–448). Springer.

[10] Crainiceanu, A., & Lemire, D. (2015). Bloofi: Multidimensional
bloom filters. Information Systems, 54, 311–324.

[11] Fan, L., Cao, P., Almeida, J., & Broder, A. Z. (2000). Summary
cache: a scalable wide-area web cache sharing protocol. IEEE/ACM
Transactions on Networking (TON), 8(3), 281–293.

[12] Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., &
Ullman, J. D. (1999). Computing iceberg queries efficiently. In
Internaational Conference on Very Large Databases (VLDB’98),
New York, August 1998. Stanford InfoLab.

[13] Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using
collaborative filtering to weave an information tapestry.
Communications of the ACM, 35(12), 61–70.

[14] Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering
for implicit feedback datasets. In 2008 Eighth IEEE International
Conference on Data Mining (pp. 263-272). IEEE.

[15] Jain, N., Dahlin, M., & Tewar, R. (2017). Using bloom filters to
refine web search results.

[16] Koloniari, G., Petrakis, Y., & Pitoura, E. (2003). Contentbased
overlay networks for xml peers based on multi-level bloom filters.
In International Workshop on Databases, Information Systems, and
Peerto-Peer Computing (pp. 232–247). Springer.

[17] Koren, Y. (2008). Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 426–434). ACM.

[18] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques

for recommender systems. Computer, (8):30–37, 2009.
[19] Kumar, A., Xu, J., & Wang, J. (2006). Space-code bloom filter for

efficient per-flow traffic measurement. IEEE Journal on Selected
Areas in Communications, 24(12), 2327–2339.

[20] Lang, K. (1995). Newsweeder: Learning to filter netnews. In
Machine Learning Proceedings 1995 (pp. 331–339). Elsevier.

[21] Ledlie, J., Serban, L., & Toncheva, D. (2002). Scaling filename
queries in a large-scale distributed file system.

[22] Leskovec, J., Rajaraman, A., & David Ullman, J. (2014). Mining of
Massive Datasets. Cambridge University Press.

[23] Li, X., Cheung, M., She, J. (2016). Connection discovery using
shared images by gaussian relational topic model. In 2016 IEEE
International Conference on Big Data (Big Data), pp. 931–936.
IEEE.

[24] Liu, H., Hu, Z., Mian, A., Tian H., & Zhu, X. (2014). A new user
similarity model to improve the accuracy of collaborative filtering.
Knowledge-Based Systems, 56, 156–166.

[25] Singh Manku, G., & Motwani, R. (2002). Approximate frequency
counts over data streams. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases, pp. 346–357.
Elsevier.

[26] Mitzenmacher, M., & Upfal, E. (2005). Probability and computing:
Randomized algorithms and probabilistic analysis. Cambridge
University Press.

[27] Ning, X. & Karypis, G. (2011). Slim: Sparse linear methods for top-
n recommender systems. In 2011 IEEE 11th International
Conference on Data Mining, pp. 497–506. IEEE.

[28] Park, Y. Park, S., Jung, W., & Lee, S. (2015). Reversed cf: A fast
collaborative filtering algorithm using a k-nearest neighbor graph.
Expert Systems with Applications, 42(8), 4022–4028.

[29] Podder, S., & Mukherjee, S. (2018). A bloom filter-based data
deduplication for big data. In Advances in Data and Information
Sciences, pp. 161–168. Springer.

[30] Pozo, M., Chiky, R., Meziane, F., & Metais, E. (2016). An item/user
representation for recommender systems based on bloom filters. In
IEEE Tenth International Conference on Research Challenges in
Information Science (RCIS 2016). IEEE.

[31] Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L.
(2009). Bpr: Bayesian personalized ranking from implicit feedback.
In Proceedings of the twenty-fifth conference on uncertainty in
artificial intelligence, pp. 452–461. AUAI Press.

[32] Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted
boltzmann machines for collaborative filtering. In Proceedings of
the

24th international conference on Machine learning, pp. 791–798.
ACM.

[33] Salman, A. (2011). Bloom’s filters: their types and analysis. Dogus
Universitesi Dergisi , 6(2), 268–278.

[34] Shanmugasundaram, K., Bronnimann, H., & Memon, N. (2004).
Payload attribution via hierarchical bloom filters. In Proceedings of

International Journal of Web Research, Vol. 1, No. 2, Autumn-Winter, 2018

26

the 11th ACM conference on Computer and communications
security, pp. 31–41. ACM.

[35] Wang, C., & Blei, D. M. (2011). Collaborative topic modeling for
recommending scientific articles. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and
data mining, pp. 448–456. ACM.

[36] Yu, Y., Gerla, M., & Sanadidi, M. (2015). Scalable vanet content
routing using hierarchical bloom filters. Wireless Communications
and Mobile Computing, 15(6), 1001–1014.

Zahra Farahi received her master
degree in algorithms and computation
from the University of Tehran in 2018.
Her research field was about
recommender systems. Currently, she is
a PhD student at Tehran University in
algorithms and computation. Her main
research interest includes: network

science, data science, data mining

Ali Moeini received his Ph.D. in
Nonlinear Systems at the University of
Sussex, UK, in 1997. He is a full
Professor of Department of
Algorithms and Computation, School
of Engineering Science, College of
Engineering, University of Tehran,
His research interests include Network

Science, Mining of massive Datasets, Randomized
Algorithms, Online Algorithms and Competitive
Computations, and Bioinformatics Algorithms

Ali Kamandi received his Ph.D. in
Software Engineering from Sharif
University of Technology in 2010.
Since 2015 he has been a faculty
member in the Algorithms and
computation group at School of
Engineering Science at the University
of Tehran. He has several publications
in the areas such as software
engineering, e-Commerce, e-

Marketing, and data sciences. His main research interests
are data sciences, data mining, and distributed systems.

Mahmood Sabankhah holds a BSc
in Electrical Engineeringfrom
Amirkabir University if
Technology(2002) an MSc (2004) and
a PhD (2008) in ;Pure Mathematics
both both from Universite Lava,
canada. Although his main research
intrest lie in field of Complex
Function Theory and Operators acting

on such space, he is aldo intrested in the field of
Optimization and Machine Learning.

 Seyed Mohsen Hosseini was born in
Iran in 1993. He completed his B.S.’s
degree in computer engineering with
focus on Hardware design at IRAN
UNIVERSITY OF SCIENCE AND
TECHNOLOGY in 2017 and he is
currently a master’s student in field of
Algorithms and computation in
university of Tehran. His main areas of

research interests are recommender systems, machine
learning, data mining, and frequent patterns recognition.

