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Abstract—In this paper, we focus on improving the 

performance of recommender systems. To do this, we propose 

a new algorithm named PBloofI which is a kind of 

hierarchical bloom filter. Actually, the Bloom filter is an 

array-based technique for showing the items’ features. Since 

the feature vectors of items are sparse, the Bloom filter 

reduces the space usage by using the hashing technique. And 

also, to reduce the time complexity we used the hierarchical 

version of bloom filter which is based on B+ tree of order d. 

Since Bloom filters can make a tradeoff between space and 

time, proposing a new hierarchical Bloom filter causes a 

remarkable reduction in space and time complexity of 

recommender systems. To increase the accuracy of the 

recommender systems we use Probabilistic version of 

hierarchical Bloom filter. By measuring the accuracy of the 

algorithm we show that the proposed algorithms not only 

decrease the time complexity but also have no significant 

effect on accuracy 

Keywords—Recommender Systems, Bloom Filter, 

Hierarchical Bloom filter 

1. INTRODUCTION 

Due to the explosive growth of information available on 
the web, recommender systems have become widely 
utilized by businesses such as Amazon, Netflix, MovieLens 
or etc. Modeling the underlying mechanisms that predicts 
users’ behavior on a particular item at a particular time 
could be useful for increasing users’ engagement or selling 
items or advertisement. 

Recommendation models advise users on which items 
they are more likely to be interested in. These models are 
usually classified into three categories: collaborative 
filtering, content based and hybrid recommender system. 

Collaborative filtering [2, 31] recommends items to 
users based on their historical interactions with other items. 
Suppose someone has been rated some movies, then 
collaborative filtering will predict his ratings to other 
movies based on similarities between this user and other 
users. Based on the users interactions collaborative filtering 
could be categorized in to two fields: explicit (rating) or 
implicit feedback (browsing history).  

The technique that have been used in Collaborative 
filtering can be classified into three categories:  

A. Memory-based which uses user’s rating data to 
compute the similarity between users or items.  

B. Model-based which uses data mining techniques 
such as dimension reduction to predict users’ rating 
of unrated items.  

C. Hybrid based which combine the other two 
methods. In Table 1 an overview of these 
techniques presented. 

Content based methods [20, 23] recommends items 
similar to those the user has liked in the past. These 
methods use user profile or item description. The idea 
behind this method is to use content of each item for 
recommending purposes. Content of an object is a powerful 
tool which can give us a lot of options. For instance, for a 
movie we could consider the genre, the director, the actors 
and the actress or other features.  

Content based methods could handle cold start problem 
better than collaborative filtering. By combining these two 
methods hybrid methods [35] created which use both 
content and collaborative information seek to get the best of 
both worlds.   

since Vectors would have a large length which led to 
sparsity and it could increase processing time, in most cases 
similarity process will not bring into account all available 

TABLE 1. AN OVERVIEW ON COLLABORATIVE 

FILTERING TECHNIQUE 

Collaborative 
Filtering 

Techniques 
Advantages Disadvantages 

Memory-
Based 

1: Easy 
Implementation 

2: New data can be 
added simply 

1:Depend to human 
rating 

2: Cold start 

3: Sparsity 

Model-Based 

1: Prediction 
Improvement  

2: Handle sparsity 
better 

1: Information Loss 
in  dimension 
reduction 

Hybrid 
1: Prediction 
Improvement  

1:Implementation 
complexity 
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features. On the other hand, using dimension reduction 
techniques such as SVD, some information would be lost. 
The consequence of information loss is a reduction in 
accuracy. 

 In this paper, in order to reduce processing time and 
space in recommendation era, we use bloom filter (BF) [3, 
5]. The concept of the bloom filter is introduced by Burton 
H.Bloom in 1970 [3]. Over the time, BF has become more 
interesting for researchers in computer science and today it 
has applications in fields like distributed system [23], 
database field, aggregate queries or ad-hoc iceberg queries 
[12, 25]. 

The first Idea for checking the membership of an item in 
a set is comparing the item with all members in that set. 
Bloom filter is a technique of checking the membership of 
an object in a set without any need to compare with all 
items. The fundamental features of any bloom filter are:  

 1) An array of n bits, needed for showing members and 
it is initially 0. 

2) A collection of hash functions.  

3) A set ”S” of m key values.  

The function of the bloom filter is such a way that for 
any elements in set ”S” hashes it by k hash functions and 
the output of these hash functions are indexes of the array 
which have to set to1, it means that the element is a 
member of S [22]. 

There are different types of bloom filter like Traditional 
(Standard) Bloom Filter [3], Counting Bloom Filters [4], 
Multi-level Bloom Filters [16], Depth Bloom filters (DBF) 
which is one of the subsequences of multi-level bloom 
filters [36]. There are different applications for bloom filter 
like network applications in traffic measurement [19], data 
storage [7], [29] or in social networks fields like social 
tagging systems [6]. 

In order to decrease the time complexity, we have used 
BloofI, which is a kind of hierarchical bloom filter based on 
B+ tree. In BloofI all leaves are bloom filters of our objects 
and also bloom filters just appear in leaves.  

In each level, the parent is bitwise OR of its children, 
that means each parent shows a set consists of just its 
children, also, each parent represents a set which is the 
union of all its children. When searching for a bloom filter 
among all bloom filters, time order is O(N) but by using 
bloofI it takes O(d logN) which d is a constant and shows 
the tree’s order [10]. The order of the tree shows the 
maximum capacity of each node. Because in B+ tree each 
node can have d to 2d children.  

In this paper, we introduce an enhanced version of the 
bloom filter and suggest to use bloom filters in 
recommendation systems. Actually, we will use the bloom 
filter in order to show the features of items. In this way, it 
causes a reduction in time and space. The structure of this 
paper is as follow: in section II some basic definitions. In 
section III related works in recommender system and 
techniques used in them and also bloom filters- their type 
and application- are mentioned we have explained a short 
review of bloom filter and bloofI as background 

knowledge. Section IV explains the proposed models are 
explained, the BloofI and PBloofI. And finally, section VI 
contains experiments results shown by charts. 

2. BASIC DEFINITION 

This section surveys related works in both fields, 
recommender systems and bloom filters, their applications 
and technologies. But in former some basic knowledge of 
bloom filters are explained. Finally, the application of 
bloom filter in recommender systems is illustrated in 
details. 

Definition 2.1. Bloom Filter: Bloom filter B consists of 

1)                 a set of n items 

2)      is a hash function   = 1…k 

3)  ́ : An array of m bits, initially all 0’s ;m << n 

Bloom filters let us do fast query the membership of an 
element. For illustration, consider checking the membership 
of an item in a set. The basic solution is comparing that 
item with all items in the set. Since sets are mostly huge so 
it is needed to cache them to the disk. This process causes 
some costs not only in the case of time but also in the case 
of space. In this point of view, bloom filters are far more 
advantageous since there is no need for comparing with all 
items. actually, each element in the set will be hashed by k 
hash functions, the output of each hash function is an index 
in the array will set to 1 [5]. 

Also for query the membership of an item, the Bloom 
filter hashes that item with the same hash functions, and 
then If even an index in the array had been set to 0 it 
confirms that for sure the element is not in the set otherwise 
if all indexes have been set to 1 it will contend that the 
element is in the set, but with an error probability that is 
named “false positive error” [3, 22]. 

Example 2.1. consider the set S ={x, y, z} the goal is 
answering the Query(w). Figure 1 shows the vector 
contents. 

Definition 2.2. Collison: 

                      [3] 

So if we have k hash functions, by adding an item to the 
set at most k bit of our array would set to 1. There are 
different classes of hash function [9] but In our work, it has 
no matter for using anyone. our concentration is on bloom 
filter. 

Definition 2.3. False positive error: The false positive 
is a situation when the output indexes regarded an item is a 
combination of output indexes of some other items [26] 

Example 2.2. False positive error: When adding 
element x to a set, it will set some bits to 1 and then by 
adding element y to the set some other bits to will be set to 
1. Now we want to query the membership of the item z in 
the set. when we hash z, part of output indexes will set to 1, 
by insertion of x and some others are set to 1 by insertion of 
y so bloom filter acclaims that z is in the set while an error 
has happened, this is what we say false positive error. The 
example of the false positive error is illustrated in Figure 2. 
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Fig. 1. An example of bloom filter for representing a set S = {x,y,z} 
which each item is hashed by three hash functions. K=3, m=18, N=3 and 

item w is not involved in the set. It is obvious that one of w’s bit is 0 so can 
be inferred that w is not in the set. 

 

Fig. 2. Items x and y are inserted but z is not inserted. When checking 
the membership of z the answer is ”Yes”. The false positive error has 

occurred. 

3. RELATED WORK 

Recently, RS implementation in the Internet has 
increased, which has facilitated its use in diverse areas such 
as book, article, music, eLearning and etc. The most 
common research papers are focused on movie 
recommendation studies. 

One of the first paper on this topic was NewsWeeder 
[20]. In this method each user read an article and then rate it 
(the ratings are 1 to 5). NewsWeeder learn the user’s 
behavior based on their rating and suggest articles which 
consider user will find it more interesting. 

Through best of our knowledge [17] was the first paper 
that used top-n recommendation task as an evaluation 
metrics. In their paper they improved memory-based and 
model-based methods to achieve better result and then they 
merged those two methods. Based on their reported result 
merging those methods could improve the predictions. 

Using restricted Boltzmann machine in recommender 
system was first suggested by Salakhutdinov [32]. In that 
time Most of the existed approaches to collaborative 
filtering could not handle very large data sets. They claimed 
that their methods outperforms SVD models and it can 
work on a data set which has more than 100 million 
user/movie ratings. 

Collaborative filtering methods find similar users or 
items using user-item rating matrix so that the system can 
show recommendations for users. However, most 
approaches related to this approach are based on similarity 
algorithms, such as cosine, Pearson correlation coefficient, 
and mean squared difference. In [24] authors presents a new 
user similarity model to improve the recommendation 
performance on cold start.   

User-based and item-based collaborative filtering 
methods are two of the most widely used techniques in 
recommender systems. While these algorithms are widely 
used in industry they require a considerable amount of time 
to find top-k similar neighbors (items or users) to predict 
user preferences of unrated items. In [28] a Reversed 
collaborative filtering presented, a rapid CF algorithm 
which utilizes a k-nearest neighbor (k-NN) graph. This 
method outperforms traditional user-based/item-based CF 
algorithms in terms of both preprocessing time and query 
processing. 

For a certain user, user-based k-nearest-neighbor 
(userkNN) collaborative filtering methods first identify a set 
of similar users, and then recommend top-N items based on 
what items those similar users have purchased. Similarly, 
itembased k-nearest-neighbor (itemkNN) collaborative 
filtering methods first identify a set of similar items for 
each of the items that the user has purchased, and then 
recommend top-N items based on those similar items [27]. 

The main idea of latent factor models is to factorize the 
user-item matrix into (low-rank) user factors and item 
factors that represent user tastes and item characteristics in 
a common latent space. Pure Singular-Value-
Decomposition-based (PureSVD) matrix factorization 
method was introduced by Cremonesi [14]. 

A weighted regularized matrix factorization (WRMF) 
method applies a weighting matrix to differentiate the 
contributions from observed purchase/rating activities and 
unobserved ones. 

“Tapestry” in [13] is one of the first recommender 
systems which has been introduced and the word 
collaborative filtering has been used for the first time. New 
versions for hierarchical bloom filter have been introduced 
in [10] and some application for hierarchical bloom filter in 
networks are mentioned in [34] in case of payload attributes 
in networks. 

Also [36] have used hierarchical bloom filter in 
VANET to combat the challenge of the large population, 
rich content and low latency in VANET. A way to represent 
item/users in recommender system are matrices, [18] has 
used matrix factorization in recommender systems. In [37] 
the Bloom filter has been used for ensuring the security of 
data integration in wireless sensor networks when it is 
deployed in an enemy environment. 

[11] has used a protocol called ”summary cache” for 
cache sharing. The structure of this summaries is bloom 
filters. Moreover, Google Bigtable is an example of 
distributed systems and [7] have used bloom filters to 
improve searching in SSTable. Since the counter in 
counting bloom filter are fixed to eliminate this defect. 
Furthermore, in [8] the author has introduced an extension 
of bloom filter named ”spectral bloom filter ”(SBF) which 
tries to predict the multiplicity of items in a spectrum. SBF 
uses a static counter to solve this drawback. The author in 
[1] has introduced the Dynamic Count Filter which is made 
if two fundamental vectors: a fixed size vector and a 
dynamic vector named Overflow Vector that counts the 
number of times that the elements in the first vector have 
overflowed. 
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A. BloofI 

A hierarchical form of bloom filter named bloofI is 
introduced in [10]. The basic construction of bloofI is a B+ 
tree. The leaves of the tree are the bloom filters and each 
parent is bitwise OR of its children. So each parent is the 
union of all its children and root shows a set which is 
consist of all elements. 

[10] has used bloofI to find all bloom filters which 
match with a special bloom filter. when adding an item, 
bloofI considers the distance between new item and all 
other items. By this strategy, similar items will be siblings. 

In B+ tree the number of each node’s children must be 
between d and 2d, d is the order of the tree, except root that 
can have at least 2 children. BloofI will be constructed by 
sequential insertions. Figure 3 illustrates the structure of 
bloofI. 

Recently some researchers have used bloom filter in 
recommender systems. [30] proposes to use bloom filter in 
recommender systems. In bloofI there are some bloom filter 
vectors constructing leaves, likewise, in recommender 
systems, there are some items and users, and each item has 
some features. 

Moreover, any user has some preferences that we count 
as user’s features. 

Example 3.1. Constructing a feature vector: To 
construct feature vectors, we have to assign each bit of a 
vector to any feature. For instance, suppose our dataset are 
movies. As shown in Table 2, each movie has features like 
writer, director, actors, and genre. So we have to allocate a 
bit to each possible feature. 

Presume that features of a movie like X, are as follow: 
In item X’s vector, related bits to d1, w1, c1, c10, c20, comedy, 
drama will set to 1 and other bits will be 0. For any feature 
that the related bit is set 1 is called an active feature and it 
means that the item has that feature. 

 

Fig. 3. A bloofI of order d=2. Internal nodes are bitwise OR of their 
children. 

TABLE 2. NOMENCLATURES 

di Director i 

wi Writer i 

ci Actor i 

  

Now it is time to convert vectors to bloom filters. In this 
case, we treat each movie as a set and the features are 
members of the set. The universal set is a set containing 
features of all movies such as all writers, all directors. Since 
vectors of features are sparse, this technique reduces space 
complexity because of its compression in features 
representation. To make bloom filters, we hash each active 
feature by k hash functions.  

To find similar items to a special item, the item should 
be compared with all other items. For measuring distances, 
Jaccard distance, Cosine distance or Hamming distance can 
be used. 

AND operation between two bloom filters shows the 
intersection of them[30]. In our case, it shows that which 
features are in common between two movies. Consider X is 
a movie and we want to find similar movies, outcome 
vector of AND operation between X and other movies 
should be computed. After that, among resulted AND 
vectors, anyone which is more similar will be suggested. 

It is worth noticing that, two items are similar not only 
in common features - common inserted features - but also 
they are similar in features which both don’t have those 
features      - common missing features. To compute this 
similarity, we can apply XNOR operation on bloom filters. 
Actually, this technique not only counts common inserted 
feature but also counts common missing features [30]. 

Both techniques, using AND or XNOR will reduce the 
operation time. But their bottleneck is the comparison of an 
item with all other items. We claim that the time can be 
reduced more effectively. To do this we used a hierarchical 
bloom filter (BloofI) instead of the standard bloom filter. 
Since now presume that we want to suggest a list of k 
similar items. 

4. PROPOSED APPROACHES 

In this section, we want to explain our two attempts to 
aim at improving the performance of recommender 
systems. Our first attempt is using BloofI in the 
recommender system andthe second attempt is probabilistic 
Bloom filter. 

A. BloofI in recommender systems 

As our first attempt, we used BloofI in recommender 
systems. BloofI will be built by sequential insertions in a 
B+ tree with an order of d. To make a BloofI tree, firstly 
two bloom filters will be inserted and we define their parent 
as the union of them, Then, other bloom filters will be 
added. Consider that after each insertion parent has to be 
updated. 

When a node’s degree reaches to 2d the node will be 
divided into two nodes. Consequently, half of the children 
will resist as their own parent’s children and the other half 
have to be added as a new node’s children. Now both 
parents have to be updated and this updating will continue 
up to reach the root. In this way, at each time we can admit 
that till now the root is the union of all inserted bloom 
filters. Figure. 3 is an example of BloofI in recommender 
systems. 
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A novel accomplishment of this technique is using this 
insertion method, we not only can suggest new items 
similar to an item, but also classify all other leaves such that 
more similar bloom filters will be as siblings. 

In this technique, to construct a parent, we apply OR on 
its children so when a bit of parent is one it means that at 
least one of the children has that feature so it doesn’t matter 
how many of children have that feature. Since it declines 
the effect of the number of 1’s in a special bit of children, 
somewhat it effects on our computations. 

Example 4.1. To illustrate more, suppose that, we want to 
add a new bloom filter Id14: [0110000001] to Figure. 4. 
The Hamming similarity between Id14 and Id3 is equal to 
2. On the other hand, the Hamming similarity between Id14 
and Id2 is equal to 3. So the bloofI algorithm recognizes 
that Id14 is more similar to Id2 while according to Figure. 
4, Id14 is more similar to Id2. So we tried another attempt 
which we are going to explain below. 

 BloofI Algorithm 

In proposed the algorithm we have four basic methods, 
findIndex, insert, lookup and update in the following 
paragraphs we describe these four methods. 

The Algorithm 1 finds the best place for an item. The 
inputs are a pointer to the tree’s root and item X. The best 
palace for insertion is the index of a parent which its 
children are more similar to the X. In this method, we 
compute the  Hamming distance between X and all root’s 
children. Among all resulted vectors, anyone that has 
greater cardinality, we choose that node to flow a path to 
leaves. Repeatedly for newly chosen node we compare the 
resulted vectors of Hamming distance and choose another 
new node dawn in the path. 

     To make a tree we use consequential insertion. In the 
Algorithm 2, again the inputs are the pointer to the root and 
item X. The first two bloom filters will be inserted and their 
parent is their bitwise OR. Since now, to add any other 
node we first run findIndex, to discover the best place for 
inserting the node. when we insert a new item to the tree the 
parent’s vector has to be updated by the Algorithm 3 and 
also other parents till we reach the root. For updating the 
parent, we use this method too. 

In the update method, the input is the returned index by 
the  findIndex method and its output is an updated tree. 

Finally, the most important method is Algorithm 4. This 
is the main method which its inputs are item X, the item 
which we want to find similar objects to it, an integer K and 
a pointer to the tree’s root. The lookup method tries to make 
a suggestion list of k most similar items to X. According to 
the value of k and the number of leaves in sub-tree, two 
different cases may happen (index.leaves is the number of 
leaves). 

  K ≤ index.leaves: in this case, we follow the path 
down to the parent of leaves, now just among 
children of this parent we choose k most similar 
items for suggesting. 

 K > index.leaves: in this case, as the difference 
between k and d increases we have to stop the 
process of following the path, in an upper level 
and choose members of our suggestion list 
among siblings and cousins. 

In Figure. 5, the different relation between d and K are 
exemplified. 

B. PBloofI: a probabilistic version of bloofI 

In BloofI, each node is bitwise OR of its children and when 
a bit sets to 1 it doesn’t matter how many of the children 
have that bit as an active feature. Anyway, by binary vectors, 
we cannot find out this issue. Hence in order to bring into 
account the number of children with a special active 
feature, we propose to use probabilities. 

Example 4.2. As shown in Figure 6, the leaves in 
PBloofI are binary bloom filters but internal nodes (parents) 
are different. The content of any bit is a fraction of children 
which have one in that bit. So the maximum value of 
parent’s bits can be 1. 

Consider an internal node (a parent) X of size m < x1, 
x2, … , xm >, and suppose that node has i children. To set a 
value to x1, we have to count the number of children that 
the first bit of them is 1. suppose in k number of children the 

 
Fig. 4. When using bloofI, Id14:[ 0110000001] has to be inserted as a child 
of Id2 while it is recognizable that Id14 is more similar to children of Id3. 

Filled bits shows common bits between Id14 and any vector. 

 

Fig. 5. A bloofI with d=2. Leaves are divided into two groups by dash 
lines.The upper group is 3 < K ≤6 for and the lower group is for K ≤3. 
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first bit is 1 so the value of the first bit of X will be 
 

 
. By 

this technique, we can bring into notice that how many 
children have a special feature. If all children have 1 in the 
same bit, the value of that bit in their parent would be 1. On 
the other side, if none of them is 1 in a special bit, the value 
of that parent’s bit will be 0. 

To suggest a list of similar items to an item X, at first, 
we check root’s children. because bits are not binary so we 
cannot use AND operation to calculate distances so we 
propose to use cosine distance. We compare all distances 
and choose the node with the most appropriate value. Now  

 

Algorithm 1 FindIndex Procedure 

1: procedure FINDINDEX 

2:         Input: node: A Boolean array of length m 

3:         Input: root: The tree’s root. Before making tree 
can be null 

4:         Output: index of an internal node. Return value is 

the index of a parent where ”X” is more analogous to its 

children 

5:          create a root node R 
6:          while R.child is not leaf do 

7:                z ← 0 

8:               create a new node T 

9:               T   ← NULL 

10:             while R.child ≠ NULL do 

11:                   T ←  R.child 

12:                   y = hammingDistance (X, T) 

13:                   if y > z then 

14:                       z  ← y 

15:                       index  ← T 

16:                       return index 

17:                   else 

18:                       z = y 

19:                    z = y 

 

Algorithm 2 Insert Procedure 

1: procedure INDEX 

2:        Input: node X 

3:       Output: Pointer root 

4:       if root = Null then 

5:          root ←   x 

6:       index  ← findIndex(nodeX) 

7:       if index.childNumber > 2d then 
8:           create a new node newParent 

9:           newParent ←  null 

10:         transport half of the children to the new parent 

11:     index.add(X) 

12:     update(index) 

13:     z ← y 
14:        return root 

on, we continue a path to leaves by repeating these 
operations for the new node. Figure. 6 is a simple but 
illustrative example of PBloofI. 

In this model, there is no change in insert and lookup 
methods. Since in this model we use Cosine distance, we 
will have a slight change in findIndex method but the inputs 
and outputs are the same as previous algorithms. 

C. Hash function 

The hash functions that are used in implementing a 
recommender system with bloom filters, must have special 
characteristics. Conventional hash functions that are used in 
cryptography try to minimize the probability of collision for 
different items, but in recommender systems, the definition 
of different items is something else. Two items may have  

 

Fig. 6. Inserting bloom filter Id14:[0110000001] to the tree. Filled bits 
shows the in internal node shows bits that will be affected by this insertion 

and in leaves shows common inserted features 

Algorithm 3 Update Procedure 

1: procedure INDEX 

2:        Input: index: returned index by findIndex 
algorithm 

3:       while index ≠NULL do 

4:             while index.child ≠ NULL do 

5:                    index = OR(index:child) 

6:               index = index.parent 
 

Algorithm 4 Lookup Procedure 

1: procedure LOOKUP 

2:       Input: node: is a Boolean array of length m 

3:        Input: root: is the tree’s root. Before making tree 

can be null 

4:       Input: K: is the number of items in suggested list 

 
5:       Output: suggested list: Return value is a list of k 

most similar items to X 

6:       Index ←  findindex(X) 

7:       If  index.Leaves ≥ k then 

8:       while index.leaves < k do 

9:             index = index.parent 

10:     Return Suggested list 
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some different active feature, but since their similar active 
features are more, we call them similar items. On the other 
hand, in common case, these are different items in the hash 
functions’ point of view. So, we need to map similar items 
in recommender systems to the same buckets. So, the 
family of Locality-sensitive hashing (LSH) is more suitable 
in these systems. 

Definition 4.1: LSH family 

LSH family   is a set of hash functions  : U  M 
where each hash function maps elements from universe U 
to a bucket    , and satisfy the following two 
conditions, where R is a positive threshold  and     is an 
approximation factor: 

Condition I: If         , then           with the 
probability at least   .  In this relation, p and q are two 

 

different items, and d is the distance function (e.g. Jaccard 
or Cosine distance). In other word, the hash function should 
map the similar objects (points) into the same bucket with 
the probability at least   . 

Condition II: If          , then           with 
the probability at most   .  In this relation, p and q are two 
different items, and d is the distance function. In other 
word, it is expected that the hash function does not map the 
different items into the same bucket. 

Notice that we interested in hash functions where 
     .  

Proposition 4.1: Assume that two items       are 
mapped into two Bloom filters      . Also assume that k 
different LSH hash function is used in this mapping. 
Equation (1) shows the probability of matching exactly i 
hash function, shown by      is: 

     (
 
 
)    

        
               (1) 

Proposition 4.2: Assume that two items       are 
mapped into two Bloom filters      . Also assume that k 
different LSH hash function is used in this mapping. If we 
use Jaccard similarity measure and        indicates 
Jaccard distance between x and y, (2) shows  the expected 
value of similarity between      : 

                  ∑      
 

       

 
          (2) 

Figure 7 shows the accuracy (according to similarity 
equation derived in proposition 4.2., for different values of 
k, and also the number of items that mapped into the same 
bloom filter. As we expect, the accuracy will decrease when 
we increase the number of hash functions, but the number 
of items that mapped to a bloom filter will decrease. In this 
example, we supposed that the size of bloom filter is m bit, 
and the total number of items is 1000. In this case, the value 
of     is an ideal choice. For larger values of k, the 
accuracy will decrease, but the average number of items in 
each bloom filter does not decrease. 

5. EXPERIMENT 

In this paper, we have used dataset “ hetrec2011-
movielens 2k” available on 
“https://grouplens.org/datasets/hetrec-2011/”. In Table 3 
details about Data set information can be reviewed. 

To construct the feature vectors, we defined a Boolean 
array. Then we allocated the first 20 bits to genres such that 
each bit belongs to a genre, and then allocate the next bits to 
screenwriters and kept doing this allocation for other 
features. In this way, the length of the feature vector will be 
112537. 

Since we use bloom filters there is no need for feature 
selection. Consequently, the proposed methods are 
supposed to be trustworthy. In these test, we took the list 
produced by vector model as the standard list. In the vector 
model, the vector of features will not convert to bloom filter 
and by computing the Hamming distances the list will be 
created. 

To check the loyalty of methods, we had compared the 
suggested list for l= 100 with the output list of the vector 
model. It is supposed that items in both lists have to be in 
common. To compute the accuracy of our models, we have 
used the (3). Items which exist in both the standard list and 
our list, we define as True Positive(TP). Also, (3) is the 
number of items in the suggestion list. 

          
  

 
                               (3) 

Now consider fp as the probability of false positive 
error, k as the number of hash functions, m as the length of 
the array and finally n as the number of elements in the set. 
Suppose all n elements have been inserted. Equation (4) 
indicates the probability for a zero bit after all insertions. 

            
 

 
     

   

                    (4) 

Obviously, (5), which is complementary of (4), shows 
the probability of a bit 1 after all insertions. 

TABLE 3. DATASET OVERVIEW 

Dataset #users #movies #screenwriters #tags #genres 

ML2K 2113 10195 4060 13222 20 

 

 

Fig. 7. The effect of k on the accuracy and number of items that mapped 
into the same bloom filter. 
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                                                   (5) 
Finally, for computing false positive error fp , consider 

(6) 

                            
 

 
       

   

       

(6)[28] 

As bloom filters are showing sets, we can use the set’s 
operation on bloom filters. assume we have two bloom 
filters BFa and BFb which are the representations of sets Sa 
and Sb. 

To show the union of these two sets we have to apply 
bitwise OR on their bloom filters. Bitwise OR on bloom 
filters can be applied under two conditions: 

1) both bloom filters should be in the same size 

2) the number of hashed functions applied on both of 
them should be equal and also same hash functions have to 
be used [17].  

Suppose n is the number of all features. hence, it is also 
the length of the feature vectors. And suppose nmax is the 
number of active features of a vector with maximum active 
features. Also, suppose X is an Item with nmax. we claim 
that X is our worst case since it causes the maximum false 
positive error. Again consider the (6), the replication of n 
with nmax results in (8), Obviously, it proves our claim [26]. 

                          
 

 
                 (8) 

To best describe the performance of each method, we 
chose 20 random items and prepared a suggestion list for 
each of them. In the end, we used a box plot to compare the 
performance of all suggested algorithms. 

Figure 8. shows the accuracy comparison between all 
methods, the bloofI, PBloofI and finally the AND method 
which does bitwise AND on a random item and all other 
items, and suggests items with grater AND vector 
cardinality(AND method is introduced in [30]). This figure 
shows that all three algorithms have somehow the same 
accuracy level. 

 

 

Fig. 8. The comparison of three algorithms in case of suggesting a list of 

100 items. 

Also, the comparison between the time complexity of 
methods is shown in Figure 9. This figure shows a 
remarkable difference in the order of time complexity 
between newly proposed algorithms and the former one. So, 
we can say that the algorithms will not decrease the 
accuracy while they decrease the time complexity. 

Another way to measure the quality of a 
recommendation system is Hit Rate (HR) which is defined 
as follows (9): 

          
     

      
 (9) 

where #users is the total number of users, and #hits is the 
number of users whose item in the testing set is 
recommended (i.e., hit) in the size-N recommendation list. 
In the Table 4 the comparison of some of these algorithms 
on ML10M could be seen. Note that in this table the N is 
equal to 10. 

Columns corresponding to parametrs a and b present the 
parameters for the corresponding method. For methods 
itemkNN and userkNN, the paramesters are number of 
neighbors. For method PureSVD, the parameters are the 
number of singular values and the number of iterations 
during SVD. For method WRMF, the parameters are the 
dimension of the latent space and the weight on purchases 
[27]. 

6. CONCLUSION 

Recommender systems represent items by a vector of 
features. Mostly, features are in an extended range, while  

TABLE 4. COMPARISON OF TOP-N RECOMMENDATION 

ALGORITHMS 

method Parameter a Parameter b HR 

itemkNN 20 - 0.238 

userkNN 50 - 0.303 

pureSVD 170 10 0.274 

WRMF 100 2 0.306 

 

 

Fig. 9. The comparison of time complexity between three different 
algorithms. (the unit of time is second) 
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each item has a small number of those features. As a result, 
showing items by vectors, the result vectors are sparse. This 
sparsity causes an increase in time and space cost. There are 
some methods that by selecting more effective features try 
to decrease the sparseness. Since some features are ignored, 
the accuracy will decrease. 

In this paper, we have focused on two important issue: 

1) reducing time complexity. 

2) increasing the accuracy. 

Bloom filters can be used for representing items in 
lower space. Since bloom filter uses hashing functions, the 
accuracy will have just a slight change. So bloom filters can 
be a good choice for item representation in order of 
reduction in time and space costs. Only representing items 
by bloom filters is not efficient and we have to choose a 
methodology for comparing bloom filters in order of 
finding similar items. In an earlier method, a special bloom 
filter had to be compared with all other bloom filters. which 
is not time-consuming. 

Making some changes in bloofI can cause a significant 
improvement in accuracy. A way of these changes is using 
the probability of happening 1 in each index of children. 
Since using bloom filter in recommender systems is a new 
idea, it seems that be a good idea for future researches. We 
have just examined bloofI, but there are other types of 
bloom filters. so experimenting other types of bloom filters 
is future work. Also, we have used static data, while in the 
network there are dynamic data too. Other future 
experiments can be defined as experimenting with different 
distance methods, analyzing the effect of different hash 
functions on results. 
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