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Abstract— The discovery and analysis of community 

structures in networks has attracted increasing attention in 

recent years. However there are some well-known quality 

metrics for detecting and evaluating communities, each of 

them has its own limitations. In this paper, we first deeply 

discuss these limitations for community detection and 

evaluation based on the definitions and formulations of these 

quality metrics. Then, we perform some experiments on the 

artificial and real-world networks to demonstrate these 

limitations. Analyzed quality metrics in this paper include 

modularity, performance, coverage, normalized mutual 

information (NMI), conductance, internal density, triangle 

participation ratio and cut ratio. Comparing with previous 

works, we go through the limitations of modularity with 

much more accurate details. Moreover, for the first time, we 

present some limitations of NMI.  In addition, however it is 

known that performance has tendency to get high values in 

large graphs, we explore this limitation by its formulation and 

discuss several specific cases in which performance even on 

small graphs gets high scores. 

 Keywords—Limitations of quality metrics; community 

detection;  quality function;  social networks;  data mining 

1. INTRODUCTION  

Detection and analysis of communities in networks has 
attracted a lot of attention in recent years. Although, there is 
no well-accepted definition for a community,  it is well-
known that most real-world networks display community 
structures. Loosely speaking, a community (also called 
cluster , module or group) is a subset of nodes which are 
more densely connected to each other than with the rest of 
the graph. Identification of communities enables us to find 
groups of nodes with similar features or 
function. Therefore, if one knows  information provided by 
a small part of a community, it   can be simply extrapolated 
to other nodes of the community. 

Community structures are found in wide variety of 
complex systems such as social networks, the Internet, food 
webs, biological networks, computer science, engineering, 
economics, politics and so on. Finding groups of related 
people in social networks,  doing recommendations based 
on relations in a group in e-commerce, classifying gene 
expression data and studying the spread of a disease in a 
population in bioinformatics are some applications of 
community detection.  

There have been devoted a lot of efforts to solve the 
problem of finding communities in a network. Different 
algorithms have been devised. An overview can be found in 

[1]. An important challenge is finding a way for evaluation 
of the quality of a partition found by an algorithm. Quality 
metrics (or quality functions) such as modularity [2], 
performance [3], conductance [4], Normalized Mutual 
Information (NMI) [5] etc., have been presented. Thus, the 
quality of a partition can be estimated in terms of the value 
related to that metric.   

In 2006, authors of [6] showed that modularity as the 
most popular quality metric expresses some limitations. It 
has been revealed that in modularity optimization strategy, 
small communities may not be found. This limitation is 
called resolution limit. To resolve resolution limit, several 
multi-resolution methods have been proposed [7, 8]. These 
methods present modified versions of modularity with 
tunable resolution parameters.  But, these methods have 
their own intrinsic limitations as well [9, 10]. In [11], 
Benjamin et al. showed that modularity maximization finds 
so many different partitions whose modularity values are 
very close to each other.  In [12], the authors expressed that 
in large graphs, performance values with great probability 
get high scores since real-world graphs are often sparse.  

 In this paper, our most important contributions are as 
follows: we show the limitations of modularity and 
performance with much more accurate details using their 
formulations. To the best of our knowledge, limitations of 
NMI have not been discussed in the field so far. We will 
show that NMI like modularity is not scalable. Therefore, in 
large graphs its values approach one. Finally, we define and 
propose two characteristics of a good quality metric called 
"sensitivity to link density" and "scalability". Then we will 
show that while only performance has characteristic of 
"sensitivity to link density", none of NMI, modularity and 
performance are scalable.  

This paper is organized as follows. Section 2 reviews 
previous works about the limitations of quality metrics and 
also   our contribution in the field with more details. In 
section 3,  some elementary definitions and conventions in 
the field are listed. In section 4, we review some existing 
measures designed to evaluate how good a particular 
partition of a network is. Then, in section 5, we will discuss 
some limitations of current measures for evaluation of 
community detection algorithms. In section 6, we define 
and present two characteristics of a good quality metric for 
evaluation of communities. Section 7 reports some 
experimental results. Finally, in section 8, conclusion is 
stated. 
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2. RELATED WORKS 

In 2006,  Fortunato and Barthelemy showed that  
modularity expresses a limitation called resolution limit[6].  
That is, modularity optimization strategies may result in 
merging communities smaller than a scale. The authors of 
[6] in order to show this limitation considered two weak 
communities    and    in a network and discussed in what 
situations, merging these two communities cause 
modularity value to increase. However, they considered just 
two simple extreme cases. In first case, two communities 
were disconnected from the rest of the network and also the 
number of links connecting them was double of the number 
of internal links of each of them.  In second case, there is a 
single link connecting them to each other and also there is a 
single link connecting each of them to the rest of the graph. 
In fact, these two simple extreme cases cannot reflect the 
limitation of modularity for merging small communities 
very well. Instead, in this paper, for merging two 
corresponding weak communities, we consider a general 
case. Then   using formulations and illustrations we will 
show that how increasing the number of links of the rest of 
the graph can cause modularity optimization to fail in 
detecting small communities. This is done by finding a 
lower bound for the number of links between two 
communities under which modularity maximization merge 
them. 

To resolve resolution limit, several multi-resolution 
methods have been proposed [7, 8]. These methods present 
modified versions of modularity with tunable resolution 
parameters. In fact, using this parameter, one can set the 
size of communities to arbitrary values, from very large to 
very small.   But, these methods have their own intrinsic 
limitations as well [9, 10]. In fact, the authors of [9] 
discussed that multi-resolution modularity is not capable of 
detecting right partition in practical application.  

In [11], Benjamin et al. showed that modularity 
maximization results in detecting so many partitions whose 
modularity values are very close to absolute maximum 
value of the measure, but they may be topologically quite 
different from each other.  They discussed that if a network 
is sparse and the number of communities approaches 
infinity, by considering the resolution limit of modularity, 
one can say that modularity value approaches one. In this 
paper, in accordance with this finding, we obtain similar but 
more accurate results. That is, we first show that if every 
community is smaller than a scale of the graph size, then we 
can find a lower bound for maximum value of modularity. 
Then, we will show that by merging small communities of a 
partition, there will be either of these two cases for 
modularity value of  the resulted partition: 1) it increases. 2) 
It decreases very little. 

In [12], the authors expressed that in large graphs, 
performance values  with  great probability get high scores 
since  real-world graphs are often sparse.  In this paper, we 
deeply go through this limitation using the formulation of 
performance. In fact, using both its definition and also 
running some tests on both artificial and real-world graphs 
we will show that even in small graph this characteristic 
exists.  

3. E LEMENTARY DEFINITIONS 

Throughout of this paper, let         represent a 
connected, undirected, and un-weighed graph where   is 
the set of nodes and   is the set of all edges of  . Let 
     ,      . Let also                be a 

partition of graph into   communities.  Also note that in this 
paper we repeatedly use words graph and network instead 
of each other. 

Suppose    is the degree of node  . Let   
   and   

     
be the number of neighbors of   within and outside of its 
community, respectively. Suppose       is the number of 
edges inside the community    and         is the number 
of edges connecting community      to the rest of the graph. 
      and          are also called the number of intra-
community and inter-community edges of community    
respectively.  Then: 

      
∑   

           

 
             ∑   

    
      

 .         (1) 

For a set   of nodes,       and        are defined 
similarly. 

For the sake of convenience, for any partition    of a 
graph, the number of intra- and inter-community links is 
denoted by     and       respectively. In other words 

     ∑            
∑    

         
 

                     (2) 

And 

     
∑              

 
 

∑    
   

    

 
              (3) 

Let       , if the corresponding partition is real 
partition of the network. In this paper,    means the i'th 
community, but  c(i)  is referred as the community 
containing node  . The terms  n(c(i))  and        denote the 
number of nodes inside the communities      and     
respectively. Finally, for simplicity in writing, instead of 
using       ,       and         , the parameters 
  ,     and       are used. 

Definition of community 

In fact the first problem in network partitioning is how 
to define exactly what a community is. However there are 
so manydefinitions for the concept of a community, there 
exists no universally accepted one. Some authors classified 
these in three classes of definitions: local, global and based 
on node similarity [1,13]. Exploring local definition in more 
depth, leads us to two subclasses: self-referring and 
comparative definitions [13,14]. 

The first subclass requires only a set of nodes and the 
relations between them to decide whether or not call the set 
a community. That is, a community is defined only in 
reference to itself. The simplest one is a clique, i.e. a subset 
in which there is an edge between any two nodes. As clique 
is very hard to satisfy in reality, some softer definitions 
have been presented such as:  n-clique,  n-clan,  n-club 
and  k-plex and  k-core [15,16]. An n-clique is a maximal 
sub-graph in which the largest geodesic distance between 
any two nodes is no greater than n . An  n-clan is an  n-
clique in which the largest geodesic distance between any 
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two nodes is no greater than  n  considering only the paths 
within the sub-graph.  n-club is defined as maximal sub-
graph with diameter  n.  k-plex and  k-core is defined based 
on nodal degree. 

On the other hand, comparative definition comes from 
the intuitive notion that a community will be denser in 
terms of edges than its surroundings. In fact, comparative 
definitions lend them-selves much more easily to search for 
communities in large complex networks. A group U is 
called a strong community, if for each member   of  :  

  
     

   .     is said to be a weak community if 
∑   

  
      ∑   

   
    

 
[16]. 

4. PRINCIPLE PRESENTED QUALITY METRICS 

In the following some of the most important quality 
metrics for measuring the quality of a network partition is 
presented. 

4-1 Modularity 

Modularity[2] as the most well-known quality metric is 
introduced by Newman and is formulated as follows 

  ∑        
 

                                   (4) 

where      is the real fraction of edges inside community   

    , whereas   
  is the expected fraction of edges within the 

community    if one redistributes edges randomly in 
communities. Therefore, based on above definition, in 
random graphs and also in the networks in which found 
communities are different from its original 
structure, modularity has low value. 

4-2.  Performance 

Performance (Perf)[3] of a partition P is defined as 

        
                                                        

        
     (5) 

or more simply as 

        
           

        
          (6) 

where          is defined as follows 

∑                         

 
             (7) 

        counts the number of correctly interpreted
pairs of nodes in the partition P, i.e. two adjacent nodes 
belonging to the same community, or two non-adjacent 
nodes belonging to different communities [1, 3, 12, 17].  By 
definition:              . 

One drawback of this measure is that in the large sparse 
networks, there is a great possibly that the number of 
nonadjacent nodes which belong to different 
communities, becomes so high. Therefore,            
might be biased to high scores in such networks. 

4-3. Coverage 

The coverage(P) [1,12,17] of a partition P of a graph is 
the ratio of the number of intra-community edges to the 
total number of edges: 

            
   

 
       (8) 

  By definition, the coverage of a partition whose all 
communities are disconnected from each other is 1, since 
all edges fall inside communities. Intuitively, the greater the 
value of coverage, the better the quality of partition. It is 
worthy to note that, whereas min-cut is not essentially a 
good partition, it has the maximum coverage value. As a 
result, additional constrains such as the number of 
communities, etc., seems to be essential to be considered in 
order to obtain a good partition. 

4-4. Normalized Mutual Information 

Danon et al. used a measure borrowed from information 
theory called Normalized Mutual Information (or NMI) [5] 
to evaluate quality of community structures: 

  ∑ ∑          
    

    
 

  
   

  
   

∑         
  
 

 
  
   

 ∑         
  

 
 

  
   

        (9) 

This measure is based on definition of confusion matrix 
N, where rows corresponds to real communities and 
columns with found communities. Each element of this 
matrix,     is the number of nodes in real community   that 

has been assigned to the community   by a community 
detection algorithm.  

As it is obvious from this definition,  real community of 
each node should already be known. In the other 
words, despite the other previously presented quality 
criteria, this measure cannot be applied on real-works 
networld, since real community structures are un-known. 

4-5. Conductance 

Conductance [12,17,18] of a cut         in a graph is 
defined as follows  

     
      

     ∑         ∑          
      (10) 

It compares the size of a cut (i. e., the number of edges 
of cut) in either of the two induced sub-graphs. 

The conductance      of a graph  , is the 
minimum conductance value over all cuts of G. 

                         (11) 

The intra-community conductance       is the 
minimum conductance value over all induced sub-graphs  
G(Ci) : 

                         (12) 

Low value of intra-community conductance indicates 
the existence of at least one community which is too 
coarse. Inter-community conductance      is the 
complement of the maximum conductance value over all 
induced cuts (Ci,V\Ci) . More formally: 

                          (13) 

Lower values of inter-community conductance might be 
as a sign of existence of strong connection between at least 
one community and the rest of the graph. Therefore, a 
partition is good if it has both high values of intra- and 
inter-community conductance at the same time [12] . 
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4-6. Internal Density 

Internal density [19] for a set   of nodes is the ratio 
between the number of internal edgesof    and the number 
of all possible internal edges: 

     
    

              
     (14) 

4-7. Triangle Participation Ratio 

Triangle Participation Ratio(TPR) [19] is simply the 
fraction of nodes of   that participate at least in one triad 
whose nodes are completely in  . 

     
                                                 

    
      (15) 

4-8. Cut Ratio 

Cut ratio [19] is the fraction of existing edges out of all 
possible edges connecting the set to the rest of the network: 

     
      

            
        (16) 

5.  LIMITATIONS OF QUALITY METRICS 

In this section the limitations of the most well-known 
quality metrics for community detection and evaluation are 
discussed.  

5-1.  limitations of Modularity 

One of the most popular criteria for computing the 
quality of a network partition is modularity (Q) which is 
introduced by Newman [2].  Modularity is defined as  

  ∑               
         (17) 

where  

    
  

 
              (18) 

and  also 

    
∑          

∑         
  

        

  
        (19) 

In [18], equivalently, modularity is formulated as 

 
   

 
  

 

   
∑   ∑         

  
           (20) 

In [20], it is shown that after merging two communities 
      and    , the change in modularity value equals to  

   
   

 
              (21) 

where      is the number of links connecting two 

communities        and     . 

In the following one important drawbacks of 
modularity, i.e. merging small communities in big networks 
is expressed. 

If  one accept modularity as a measure for evaluating 
quality of a partition found by a community detection 
algorithm, thus whatever the modularity is more close to 
one, the better the quality of found partition will be. One of 
the limitation of modularity is in large networks where 
modularity maximization strategy tends to merge small 
communities despite of lacking enough relationship in 
terms of number of links connecting them. 

In what follows limitation of modularity maximization 
strategy in large networks will be discussed, by using 
modularity formula and also the condition under which 
merging two communities will increase 
modularity. Suppose that there are two communities    and 
   connected together with some links. Let     and    be 
the number of links within communities    and 
   respectively. Let      and  
    define the set of nodes inside the two communities. Also 
let      be the number of links connecting them. 

Let  Gr  be the induced sub-graph               .  Let 
also the number of links inside      be denoted by    . Also 
suppose that the numbers of links connecting communities 
   and     with       are referred as       and       

respectively ( See the Fig. 1). 

 

Fig. 1- An sample scheme for merging two communities 

Let us define four parameters   ,   ,    and   as 

follows.         ,        ,          ,        
   . Equivalently: 

                                       (22) 

without loss of generality, one can assume that    
    , i.e.,      . Suppose that    denotes the change in 
modularity value, if two communities       and    are 
merged. 

By using (19) dna (21  ( ,     is positive, if and only if  

   

 
   

        

  
 

        

  
       .     (23) 

With setting              ,             , 
                    and also with some 
simple computations, the condition under which     is 
positive can be written as 

                 
               

             (24) 

With adding term  
   

 
      

  to two sides of above 

inequality, it can be simplified as 

      
   

 
      

                 
   

 
       

  .      (25) 

Finally, from that, the following relation for have  
     is clearly obtained 

     √             (
   

 
  )

 
 (

   

 
  )    . (26) 
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 Suppose that    , i.e.    has more links than each of 
these two communities. Let consider the two communities 
to be weak communities. Therefore,           and  
         from which two upper bounds for a and b, i.e. 
    and       is obtained. By supposing   and   as 
fixed numbers, let call right part of inequality (26) as 
      . Therefore, the above inequality can be simplified 
as           . If one can find an upper bound for 
       denoted by  , i.e.,          for all values of   
and   in their ranges, then the relation       is one 
sufficient condition for satisfying the inequality (26)   and 
in turn having     .  It can simply be proved that one 
candidate for   is            . Therefore, the 
following relation                 is one sufficient 
condition for having      after merging the two 
communities: 

     √                               (27) 

 Let simplify above relation as        . Therefore, 
        is a sufficient condition for having     . Let 
consider      , i.e.    , for simplicity. In this 
situation, one sufficient condition for which      is positive 
can be more simplified as 

     √                           (28) 

Now, in this situation if     ,     ,      and  
     , then           ,           ,     
      and           are sufficient conditions 
respectively in order to have     positive (see Fig. 2). 

If a=0 and b=0, that is if these two communities are 
disconnected from the rest of graph, the sufficient condition 
(27) for having       can be more simplified as 

     √                    (29) 

Now, one sufficient condition to witness positive    
can be more easily satisfied. That is, if     ,     , 
     and       , then          ,          , 
           and            are  sufficient conditions 
respectively in order to have       . 

Fig. 3 shows the limitation of modularity maximization 
for large graphs for        and        . By 
fixing  , when y increases, the sufficient condition for 
merging two corresponding communities (       ) is 
more easily satisfied. As it is seen from (27), (28) and (29) 
and Fig. 3, modularity maximization in large networks will 
merge small communities together despite existing enough 
relationships between them. 

If for each community   , there exist an integer   such that 

∑       
  

       
, thus using (20) it is not very hard to 

obtain the  following lower bound for  modularity 

   
   

 
  

 

 
           (30) 

If all communities are weak and for each community   :    

          , then the relation ∑        
      and in 

turn the above lower bound holds. For example if all found 
communities are weak and also each community consists 

 

Fig. 2- Limitation of modularity, when       (x=1). 

 

Fig. 3- Limit of modularity maximization. 

of at most one percent of all edges of the graph (i.e. f=50), 

then    
   

 
      . 

Suppose that    and    indicate the modularity values of 

real and found partitions of a graph respectively. It is clear 
that by merging some weak communities, the resulted 
community will be weak as well. Therefore, if real 
communities are weak and one can find an integer    such 
that for each community              , then by 
merging real small communities, as long as the relation 
           holds for each found community, one of the 

two following cases holds:        or    
 

 
       .  

This is because in this case:    
  

 
  

 

 
,    

   

 
  

 

 
 

and         . Therefore, in this case, by merging real 

weak communities,  the relations     
 

 
        and  

  

 
  

 

 
        hold.  

In large graphs one can find larger values of such f.  
Whatever real communities have higher internal 
relationships and lower external ones, then lower bound of 

  , i.e. 
  

 
  

 

 
, will be more close to one. This shows that 

by modularity maximization, one may find so many 
partitions with high modularity values but with very 
different structures at the same time.  
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5-2.  Limitation of Performance 

First let investigate in what condition performance value 
will increase after merging two communities    and   . 
The performance values before and after merging are 
denoted by          and          respectively. The 
following are straightforward based on the definition of 
performance: 

         
                                       

        
 

         
                                  

        
     (31) 

The change in performance value after merging, equals 
to 

                        
         

        
        (32) 

Now, the condition under which merging two 
communities results in higher performance value can be 
stated as 

    
    

 
       (33) 

That means that there should exist more than half of 
maximum possible links between two communities, in 
order to         when combining them together which 
is very hard to be satisfied in reality. 

Therefore, unlike modularity , when using performance 
as quality metric, sub-graph    have not any role in 
deciding whether or not combining these two communities 
cause this measure to increase. Thus, different from 
modularity maximization, using performance maximization 
in large graphs one cannot expect to witness some 
drawbacks such as merging small communities without 
enough relation . 

The next thing to consider is the range of values which 
performance can get . The following relation is 
straightforward 

        
      

 
      ∑

        

          (34) 

With replacing above formula in (6) and also with using 
(2) and (3) the following is obtained. 

          
(∑   

 
    )  

      
 

∑   
  

    ∑   
   

   

      
   (35) 

Suppose that for each community    , the relation  

    
 

 
 holds for some integer number   . In this situation, 

∑   
   

  

           (36) 

 Therefore,  following relation holds: 

          

  

 
  

      
 

∑   
  

    ∑   
   

   

      
     (37) 

Since  
(
  

 
  )

      
 

 

 
 for each positive integer  , then the 

following simple result  clearly hold 

          
 

 
 

∑    
  

      ∑     
   

   

      
       (38) 

In case one, suppose that every community        is 
a weak community. In this case,  doia sn aiaononosn sa

sidtnunonoiomsn  the following holds:  

          
 

 
  .       (39) 

 

Fig. 4- Limitation of performance. 

It is obvious that by merging several weak communities 
together, the resulted community is still a weak community. 
This indicates that as long as merging small real 
weak communities results in forming a community     with
     

 
 

 

 
, (39) will hold.  

Therefore, one might find so many partitions whose com
munities consist of several small real communities with just 
one mentioned condition in size and still performance 

value is greater than    
 

 
 . This lower bound of 

performance value based on values of    is displayed in Fig. 
4. 

In case two, suppose that there is just one  restricting 

condition 
     

 
 

 

 
 for each community. In this case, 

communities are not necessarily weak.  The following 
relation clearly holds: 

∑   
  

    ∑   
   

                  (40) 

Also as     
 

 
 (  is average degree of network) , os: 

          
 

 
 

 

   
       (41) 

Therefore, for a sparse network with         

and      , and with the condition 
     

 
   

 

  
 for each 

community, Perf(P) > 0.93 which is extremely 
high. Suppose that  Ps  indicates the partition in which each 
community consists of one single node. In this case,     

  and       . Therefore,         
      

 
 

 . Performance of this partition equals to            
  

      
 . Since     

 

 
, the following is straightforward: 

           
 

   
        (42) 
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For real-world networks which are sparse (   ), 
         is very close to one. For example, if n =1000 and 
  =20,            is 0.98 which is very high. Increasing   
cause performance value to get more close to one. 
Therefore, high values of performance does not necessarily 
indicate the goodness of a partition. 

5-3. Limitations of NMI 

Consider the real partition                  of a 

network into   communities. Let consider two cases: 

Case 1: splitting communities. First suppose that 
a community detection algorithm Alg1 has divided each real
 community     into   equal-size sub-communities     , 

    ,...,     . That is (    )   (    )            . Let 

define   as the set consisting of indices of real communities, 
i.e.            . Corresponding NMI 
value for this case equals to 

          ∑               

          ∑                      
      (43) 

 
In the above equation, it is not very hard to show that 
by fixing 
 ,when   (number  of communities) increases,      value  
increases as well. This can be more clear to understand this 
fact if the sizes of real communities are considered to be 
equal which means                    . By this 

supposition, each     elements equals to         and also 

each    and    elements equal to     and        

respectively.     value for this sub-case is 

        

               
       (44) 

 

Fig. 5- Limitation of NMI for splitting case. 

In above example it can be clearly understood that by 
having fixed s, if  one increases   (again, number of 
communities of the network),     value increases (see Fig. 
5). Fig. 6 demonstrates equation (44) when    . This is 
actually a drawback of     to see this behavior. To see 
why this is actually a drawback, let consider partition    
consisting of one arbitrary community.  

Let make R copies of this community to form a partition 
   containing   separated similar communities. Most 
famous community detection methods such as modularity 
maximization and label propagation algorithm [16] and so 
on, follow the same behavior on each community of    as 
on the one single community of   . For example, if they 
divide the single community of partition P1 into   sub-
communities, then they will follow the same approach on 
each community of partition P2. 

 In fact intuitive idea tells us to do that as well. But NMI  
for partition P2 sets a higher value as a sign 
of  better accuracy in community detection because of just 
increasing number of communities of partition P2, not based 
on better quality of detected communities.  

Case 2: merging communities. Let             
        hold for each community of real partition. 

Suppose that each detected community of the found 

partition of algorithm Alg2 consists of    communities of 

the real partition.  NMIvalue of this case is as follows 
                

               
                   . (45) 

Similar to previous case, in this case, by fixing    and 
increasing number of the real communities one can get 
higher NMI values (see Fig. 7 for    ). 

5-4. Limitations  of Coverage 

This is very obvious that this measure cannot be a good 
quality metric neither for finding communities nor for 
evaluating the detected communities. Assigning all nodes of 
a network as one big communities leads to having 
maximum Coverage value. Therefore, some additional 
information such as the number of communities and so on 
is needed for detecting communities. As in reality such 
information does not exist about the real communities, this 
measure cannot be helpful for community detection. 

5-5. Limitations of Internal Density 

The most important drawback of this quality metric is that it 
just considers internal relations between nodes of a 
community without any attention to external ones. Consider 
a partition whose communities consist of pairs of nodes 
connected with an edge. This quality metric evaluates this 
partition with value "one" as the best possible partition, 
without any regard to their external relation to the rest of 
the network. So, it is necessary to use also those quality 
metrics which take into account external relations of 
communities. That is, in addition to high internal density, a 
community should have low external ones. But even in this 
case an import issue will be how to participate both of these 
two measures in final formula. 

5-6. Limitations of Cut Ratio 

Despite other previously defined quality metrics, low 
values of Cut Ratio indicate better community detection.   
Cut Ratio has two main drawbacks. The first one is that it 
just considers external connections of each community. The 
second one is that because of large value of its denominator 
it usually gets low values which cannot reflex correctly the 
external strength of communities. 
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Fig. 6- Limitation of NMI for splitting case when s=2. 

 

Fig. 7- Limitation of NMI for merging case when k=2. 

5-7. Limitations of Triangle Participation Ratio 

The first limitation of this measure is its non-decreasing 
behavior.  This means that when merging real communities 
together, as even nodes from different communities may 
share some common friends, this measure can increase.  
Second limitation of this measure can be the fact that in 
sparse networks with low density of edges, this quality 
metric may not be very helpful. Because this measure is 
mainly based on this intuitive idea that nodes inside 
communities, because of high internal densities of edges, 
share some common friends together.       

5-8.  Limitations of Conductance  

Similar to other quality metrics, conductance has several 
limitations as well. First limitation of conductance is that 
despite all other previously defined quality metrics, 
computing intra-community conductance, i.e. α(P),   is NP-
Hard. Because, for each community   , all cuts of induced 
sub-graphs          should be considered for computing 
conductance of      .  This cannot be done in polynomial 
time. This property makes this measure impractical to be 
used in reality for evaluation of community structures.    

The second limitation of conductance is that both of 
intra-community conductance and inter-community 
conductance do not give us much information about a 
partition if their corresponding values are low. For example, 
if in a partition there is just one community consisting of 
two or more sub-communities with weak connections 
between them, intra-community conductance α(P)  will be 
low.  In this case, no matter how many communities have 
such similar internal connections, α(P)  is low (see Fig. 8).  
On the other hand, low value of inter-community 
conductance      do not give us any information about this 
fact that how many communities have strong relationships 

with the rest of network.  In this case it just tells us that 
there is at least one such community (see Fig. 9).  .  

6. PROPERTIES OF A GOOD QULITY METRIC 

In this section, we define and present two properties of a 
good quality metric called σ.  

1. Sensitivity to link density: Comparative definition of 
a community tells that a community is a set of nodes with 
higher internal relationships than external ones. Therefore, 
one can expect that either by increasing (decreasing) the 
internal link number or  decreasing (increasing) the external 
link number of a community,  the quality of  that 
community and in turn the quality of  corresponding 
partition  boosts (drops).  Let call this behavior as 
sensitivity to link density.  From all previously mentioned 
quality metrics, only performance has this characteristic.  
For modularity, one can find examples where this 
characteristic does not hold. As an example, consider a 
partition               including three disconnected 
communities where each community has one internal link.  
Suppose that one community is chosen and one link in 
added to that community. Let call this new partition as     
The modularity values corresponding to partition      and 
   equals to              and                
respectively. Therefore, while one expects that the 
inequality             should hold, this is not the case. 
Since NMI does not consider links, it has not this 
characteristic as well. 

As an special case of this characteristic,  σ should get 

its optimum value on the best possible partition, i.e.  the 

partition      consisting of disconnected cliques.  But, as it 

can be inferred clearly from (20), modularity value would 

not equal to one in any possible situation. But, performance 

will get its maximum value one on the partition      .  

2. Scalability:  This trait indicates that with increasing the 

size of a graph, the accuracy of a quality metric for the 

evaluation of network partitions should not change.  For 

example, in the simplest case, let consider a partition   

 

Fig. 8- Two different partitions of a network with equal intra-community 
conductance. 

 

Fig. 9- Two different partitions of two networks with equal inter-
community conductance. 
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                including     disconnected communities 

such that              .  Increasing the number of 

community  to     results in a partition   called     . It is 

obvious that the quality of the communities in two partitions 

is the same, however using  

either self-referring or comparative definitions of a 

community  leads us to this conclusion as well.  Modularity 

and Performance are not scalable on big graphs, since they 

evaluate partition      higher than   . Modularity values on  

   and      are   
 

 
 and   

 

  
  respectively. In addition to 

these two quality metrics, as it has been discussed earlier, 

NMI is not scalable as well, since its values approaches one 

with increasing just the number of communities. 

7. EXPERIMENTS 

In this section, we are going to run some experiments to 
analyze how different quality metrics evaluate 
communities.  

7-1. Artificail networks 

For this purpose GN benchmark [21] is chosen. GN 
benchmark is a well-known artificial benchmark for 
community detection which is called Girvan-Newman 
benchmark  (or  GN benchmark). This network consists of 
128 nodes with the equal degree  =16  for each 
node. There exists four communities which each of them 
has 32 nodes. Each node makes     edge connections to 
other nodes in its community randomly. The remaining 
     (          ) edges will also be selected randomly 
with the other communities. The ratio        is called 
mixing parameter and is denoted by μ. As μ increases, the 
communities will be more difficult to detect.  

At first step, starting from single nodes as singleton 
communities, from each community, a random set of K 
nodes called sub-community C is selected in order to 
evaluate quality metrics on them.   starts from 1 to 32, i.e. 
number of nodes inside each community of GN. The 
random selection of this set is carried out 50 times for each 
K on GN benchmark in order to increase accuracy. In this 
step, let define          . After that, merging real 
communities is carried out in step two. In step two, at first 
each pair of communities are merged together. These pairs 
are chosen randomly as well. This is shown by setting 
   . After that, all four communities are merged together 
and the quality metrics on the whole network is evaluated.  
In this case,    .  

In Fig. 10, evaluations of different quality metrics on 
GN benchmark can be seen.  Performance (P), modularity 
(Q), internal density (ID), triangle participation ratio (TPR), 
cut ratio (CR) and inter-community conductance (C).  As in 
cut ratio, low values indicates better quality of detected 
communities, for having a consistent evaluation, let define 
and use star version of this measure, i.e. cut ratio(*)=l-cut 
ratio. Therefore, in Fig. 10, CR (*) indicate cut ratio (*). 

A good quality metric q should be such that with 
increasing S, it should increase until S=1. Because in this 
stage, by increasing S, sub-communities are getting larger 
and thus quality of detected communities becomes better.  
After this point, whatever real communities are merged 

together, q should follow a decreasing trend.  Therefore, a 
good quality metric should have increasing trend for S≤1 
and decreasing one for S≥1.  As it is obvious from Fig. 10, 
modularity follows this pattern very well for GN 
benchmark. Performance and internal density has 
approximately fixed value for S≤1 and a decreasing trend 
for S≥1. Other quality metric have not good results. Note 
that, however in Fig. 10, μ=0.1 but for μ=0.2, μ=0.3 and 
μ=0.4, the results are similar (see Fig. 11 for µ=0.4). 

7-2. Real-world networks 

In this subsection, we are going to evaluate the accuracy 
of different quality metrics on real-world networks.  In this 
section, we chose three following real-world 
networks:Zachary’s karate club, dolphin and football.  For 
each of these three networks, starting from small 
communities they will be merged in repetitive process until 
real communities are obtained. The primitive small 
communities are formed by assigning pairs of nodes with 
highest ratio of common friends into the same community.  
In merging process, in each repetition, at first all 
communities are unmarked.  Then, in that repetition,   for 
each community   , a community     with maximum 

number of links between them is  selected.  If both of them 
are unmarked, then they are marked with number      to be 
merged at the end of that repetition. For this section only 

 

Fig. 10- Quality metrics values  on GN benchmark for µ=0.1. 

 
Fig. 11- Quality metrics values  on GN benchmark for µ=0.4. 



International Journal of Web Research, Vol. 1, No. 1, Quarter 1, 2018 

27 

NMI, performance and modularity are tested, since the 

other quality metrics, as discussed earlier, have monotonic 

trend which does not reflect the quality of detected 

partitions.  
Forming small primitive communities and also merging 

process are followed such that just sub-communities from 
the same real community can be merged. In this paper, in 
the illustrations and graphs, repetition one is associated with 
the result of detected primitive sub-communities. The next 
repetitions are the results of merging process.  

Zachary’s Karate Club: This network represents the 

friendship between 34 members of a karate club. After a 

conflict between club's administrator (node 34) and the 

club's instructor (node 1), the  instructor leaved the club 

and started a new one with taking about the half of the 

original club's members with him. The resulting two 

groups can be considered as ground truth communities of 

this network for testing the accuracy of different 

community detection algorithms.  These two original 

communities are specified with square and circle in Fig. 

12.  
In Fig. 13, the result of merging process of sub-

communities of karate network is illustrated.  For each 
repetition R, three values of  NMI , performance (P) and 
modularity (Q) are displayed.  Unlike performance, 
modularity values follow the increasing pattern of NMI 
which indicates truly the better quality of detected 
communities in next repetitions. 

However modularity values have increasing behavior in 
Fig. 13, but maximizing modularity using simulated 
annealing (Sim. Ann.)  finds four communities on this 
network, instead of two real communities. The detected 
communities using  Sim. Ann.  method are illustrated with 
different colors in Fig. 12 

Dolphin network:  This network displays the statistically 
significant frequent association between 62 bottlenose 
dolphins in Doubtful Sound, New Zealand. This network 
has two original communities which are specified with 
circle and square in Fig. 14.   

The results of  hierarchical pairwise merging of sub-
communities  are displayed in Fig. 15.  As it can be seen, 
after 14 repetitions, two real communities are recovered by 
getting      .  The array       = [37, 26, 21, 17, 14, 
12, 10, 8, 7, 6, 5, 4, 3, 2] indicates the sizes of resulted 
partitions in each repetition R. Thus, starting from 37 
detected primitive sub-communities, in second and third 
repetition, 26 and 21 sub-communities are formed 
respectively and so on.   

In fact, as it is clear from Fig. 15, by this hierarchical 
merging process, the maximum resulted modularity value is 
obtained in repetition 5 with 14 detected communities.  This 
best found partition of this naive merging process based on 
obtained modularity value is   very far from the real 
partition including two original communities.  

Simulated annealing method which is used to maximize 
modularity has better result than the previously mentioned 
naive merging process (see Fig. 14) . This method 

 

Fig. 12- The detected communities of  modularity maximization using 

simulated annealing on karate network. 

 
Fig. 13- Modularity, NMI and performance values in merging process on 

karate club network. 

 
Fig. 14- The detected communities of modularity maximization using 

simulated annealing on dolphin network. 

 
Fig. 15- Modularity, NMI and performance values in merging process on 

dolphin network. 



Exploring the Limitations of Quality Metrics in Detecting and Evaluating Community Structures 

28 

detects five communities for this network.  More 
specifically, it finds one original community as it is, but 
divides the second one into four smaller sub-communities.  

College football network: This network is 
representation of 115 nodes and 613 links. Nodes represent 
football teams and the links between two nodes indicate 
that two corresponding teams have played a game together. 
Teams are divided into 11 conferences.  Also, there are five 
independent teams which do not belong to any conferences. 
These five teams are specified with orange color in Fig. 16.  
Modularity values increase as number of repetition R 
increase (see Fig. 17).  Modularity maximization using 
simulated annealing failed to find one community, but other 
communities were detected fairly well. 

8. CONCLUSION 

In this paper we analyzed deeply the lmitations of 
somefamous quality metrics for community detection and 
evaluation. We showed limitations of modularity 
maximization and performance with more accurate details 
than previous works. Moreover, for the first time, we 
showed that NMI has the scalability issue like modularity 
and performance.  Moreover, we discussed the limitations 
of other quality metrics such as conductance, internal 
density and cut ratio, etc. In addition, we defined and 
proposed two characteristics of a good quality metric for  

 

 

Fig. 16- The detected communities of modularity maximization using 

simulated annealing on football network. 

 

Fig. 17- Modularity, NMI and performance values in merging process on 
football network. 

 

community evaluation. Now, to remedy some of these 
limitations to some extent, we propose several possible 
approaches to be considered as future work. Firstly, in 
modularity optimization, communities bigger than a scale 
can be treated as new sub-graphs. Thus on these big sub-
graphs, modularity optimization can be run again to find 
possible small communities. Secondly, using both intra-
community and inter-community conductance can be 
helpful, if we consider two points: 1) intra-community 
conductance should be rewritten as the average 
conductance value of the graphs induced by each 
community. Similarly, inter-community conductance 
should be considered as the average conductance values of 
communities. 2) We use an appropriate hierarchical 
agglomerative algorithm for community detection such that 
starting from single nodes as communities, finally one big 
community is obtained as the whole graph. Then, the 
partition of the iteration with highest intra-community and 
lowest inter-community value can be taken as final output. 
Thirdly, presenting quality metrics which consider only 
local information of each community instead of global one, 
may lead to community detection and evaluation with 
higher accuracy. 
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