

 http://dx.doi.org/10.22133/ijwr.2024.417666.1185
. S. Ahsani, M. Yousef-Sanati, M. Mansoorizadehc, " DynamicCluStream: An algorithm Based on CluStream to Improve Clustering Quality

", International Journal of Web Research, vol.6, no.2,pp.77-87, 2023, doi: http://dx.doi.org/10.22133/ijwr.2024.417666.1185.

*Coressponding Author

Article History: Received: 23 September 2023 ; Revised: 9 December 2023; Accepted: 27 December 2023.

Copyright © 2022 University of Science and Culture. Published by University of Science and Culture. This work is licensed under a Creative Commons

Attribution-Noncommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted,

provided the original work is properly cited.

DynamicCluStream: An algorithm Based

on CluStream to Improve Clustering

Quality

Sahar Ahsania, Morteza Yousef-Sanati*b, Muharram Mansoorizadehc

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Iran;

s.ahsani@eng.basu.ac.ira, mysanati@basu.ac.irb, mansoorm@basu.ac.irc

A B S T R A C T

Data streams are continuous flows of data objects generated at high rates, requiring real-time processing in a

single pass. Clustering algorithms play a vital role in analyzing data streams by grouping similar data

samples. Among various time windows for evolving streams, the sliding window method gradually moves over

the data, focusing on the most recent information and improving clustering accuracy while reducing memory

requirements. The development of distributed computing frameworks like Apache Spark has addressed the

limitations of traditional tools in processing big data, including data streams. This paper presents the

DynamicCluStream algorithm, an enhancement over Spark-CluStream, which employs a two-phase

clustering approach with precise clustering of recent data. The algorithm dynamically determines the number

of clusters by merging overlapping clusters during the offline phase, resulting in significant improvements in

cluster precision. Experimental results show that it performs up to 47 percent better on average in terms of

precision on the CoverType dataset and up to 92 percent better on average in terms of precision on the

PowerSupply dataset. Although the algorithm is slower due to data sample removal and cluster integration,

its impact is negligible in a distributed environment.

Keywords— Data mining, Online Clustering, Dynamic Clustering, Stream Clustering, CluStream, Dynamic

CluStream.

1. Introduction

A data stream is a continuous flow of data
objects that are generated at different intervals in
large quantities and at a high rate, unlike traditional
datasets that are stored in a warehouse. Analyzing
data streams is crucial and beneficial in various real-
world applications, including customer behavior
analysis, weather forecasting, stock exchange, urban
traffic monitoring, and earthquake prediction [1].
Given the unique nature of a data stream, the
available data can only be observed once and must
be processed in real-time in a single pass [1, 2].

Clustering is a popular unsupervised learning
technique that divides data samples into relatively
homogeneous groups based on maximum data
similarity within each group and minimum
similarity between members of different groups.
Data stream clustering algorithms receive the input
data using a temporal window and process a part of

it that fits within the window. There is a wide
variety of time windows for evolving streams,
including landmark, fading, tilted, and sliding
windows as the most common instances [2-5].
Compared to the other window types, the sliding
window method gradually moves over the data and
disregards instances that have already been
inspected, focusing solely on the most recent data.
This approach enhances the accuracy of the
clustering algorithm and reduces the amount of
memory needed for its operation [6].

Most of data stream clustering algorithms consist
of online and offline phases. One of the most
popular of which is Clustream [7]. The Clustream
algorithm, which is based on partitioning, operates
in two phases. In the online phase, summaries of the
data stream are stored as micro-clusters. In the
offline phase, it performs a k-means clustering
algorithm over the generated summaries to obtain k
user-specified macro-clusters [5, 8]. In general, the

http://dx.doi.org/10.22133/ijwr.2024.417666.1185

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

78 78

Clustream algorithm serves as a fundamental
benchmark often used in comparison scenarios. It's
evident that the vast majority of algorithms use the
concepts introduced by BIRCH [9], Clustream, or
Denstream [10].

The development of distributed computing
frameworks such as Hadoop has been driven by the
limitations of traditional tools and techniques in
effectively processing and extracting information
from big data, particularly data streams. The demand
for real-time data analysis has led to the
development of powerful processing engines like
Apache Spark, which builds on the MapReduce
model used in Hadoop and can handle various
computations like interactive queries and data
stream processing. Compared to Hadoop, Spark is
faster because it uses main memory for data
processing and maintenance, which increases
program processing speed [6, 11].

The paper introduces the DynamicCluStream
algorithm, emphasizing scalability and precision .
Our method represents an enhancement over Spark-
Clustream [12], which serves as a distributed
version of Clustream. DynamicCluStream employs a
two-phase approach similar to basic CluStream, but
with more precise clustering of the recent data.
During the online phase the algorithm adjusts the
window type. Instead of the tilted window that is
used in original algorithm, our proposed algorithm
utilizes a sliding window mechanism to locally
process data. In the sliding window, statistical
summary of data is extracted from [Tc - R + 1: Tc],
where Tc is current time and R represents the size of
the sliding window. Additionally, unlike the original
algorithm that determine k user specific clusters with
k-means algorithm, our method merges overlapping
clusters using the common radius concept during the
offline phase and dynamically determines the
number of clusters. The degree of overlap between
pairs of micro-clusters is measured based on their
RMSD distances, and sufficiently close micro-
clusters are merged. This approach ensures that
clusters are combined based on their proximity. This
results in 40-90% improvement in cluster precision
in certain time intervals. Although the algorithm is
slower due to data sample removal and cluster
integration, this is hardly noticeable in a distributed
environment.

In summary, the main contributions of this
research are as follows:

1. The use of sliding windows in the online
phase ensures that only data within the
window is processed, leading to more
concentrated clusters.

2. The proposed method eliminates the need to
predetermine number of clusters in the
offline phase. This approach prevents

merging clusters with different labels and
results in higher-quality clusters.

3. The final clustering in the offline phase is
performed based on identifying the nearest
neighbor for each micro-cluster. If the
overlap criterion is satisfied, two clusters are
merged.

4. The proposed approach is implemented in
the Apache Spark distributed computing
framework.

The structure of the paper is as follows: Section
2 reviews the literature on data stream clustering.
The functioning of CluStream is explained in
Section 3. Section 4 provides a comprehensive
overview of the proposed algorithm. In Section 5,
the results of an experimental study and evaluation
are presented, and the final section summarizes the
conclusions.

2. Previous Work

In this section, a review of several data stream
clustering algorithms including CluStream is
presented. Furthermore, the CluStream is explored
in more details, since it has numerous modifications
and adaptations in recent years.

 One of the recent works in this area is the
DstreamEPK discussed by Zhang et al. [13]. The
algorithm improves upon CluStream and K-Means
for clustering a stream of data. The study analyzed a
significant amount of data on users' electricity
consumption, with the aim of optimally allocating
power resources based on an analysis of users'
needs, behaviors, and habits through clustering.
DstreamEPK employs a two-phase online-offline
clustering method following CluStream, and utilizes
a time-decay technique to periodically update and
remove micro-clusters, reducing the influence of
historical data on clustering. In the offline phase, the
Canopy algorithm is used to identify the optimal
number of initial clusters (K) for K-Means. Also, a
highly efficient parallel K-Means algorithm is
presented. The experimental results indicate that the
proposed approach is stable, efficient, and capable
of clustering power data with greater accuracy.
However, it should be noted that the number of
clusters in the offline phase remains fixed.

A clustering algorithm named CCluStream was
introduced in [14], which is an improvement on the
CluStream algorithm. CCluStream utilizes the
parallel implementation in Spark Streaming and
enhances the offline phase of CluStream. The offline
phase of CCluStream combines the Canopy and K-
Means algorithms, where the Canopy algorithm
specifies the value of K in K-Means resulting in a
more efficient K-Means algorithm. The experiments
demonstrate that CCluStream is more efficient and

 DynamicCluStream: An algorithm Based on CluStream to Improve

Clustering Quality

 79

accurate than the original algorithm, but in some
cases, the accuracy of the algorithm decreases with
an increase in the number of computing nodes.

Hua et al. [15] described the DEGDS clustering
model which enhances CluStream by combining the
strengths of density-based and grid-based clustering
algorithms. This approach enables the algorithm to
produce various cluster shapes and detect outliers
while taking advantage of the parallel processing
capabilities of the Apache Spark framework to
enhance clustering efficiency. The study results
indicate that the DEGDS algorithm outperforms
CluStream in both accuracy and efficiency.
However, this approach may not be suitable for
high-dimensional data due to its reliance on a grid-
based model, and the quality of the clustering may
depend on the network granularity. Additionally, the
use of the grid model may cause a decrease in
execution speed as the number of nodes increases
due to its higher memory requirements.

Sayed et al. [16] introduced the SCluStream as
an upgraded version of CluStream for identifying
clusters using a sliding window. The experiments
have shown that the algorithm outperforms the basic
algorithm in terms of both accuracy and scalability.
However, the paper does not explicitly present a
mechanism for removing data, and these
modifications were only evaluated during the online
phase of the algorithm.

Bagozi et al. [17] presented the multilevel
parallelization approach for clustering big data
streams which utilizes CluStream within the
Apache Spark distributed framework to identify
anomalies and manage outliers. This method offers
more powerful parallelization and efficient resource
utilization and can adjust parallelism at different
levels during operation to reduce computational load
and execution time. Although the proposed approach
has demonstrated scalability and efficiency, it may
become less scalable if the buffer size exceeds the
maximum number of micro-clusters allowed.
Additionally, it's important to note that the method
only focuses on the online phase of CluStream.

Huang et al. proposed a GPU-based parallelized
version of the CluStream, PaStream[18]. This
algorithm enables the parallel implementation of
clustering through buffering the data stream.
Measuring the distance between micro-clusters,
calculating timestamps of them for decision-making
on the removal of micro-clusters, and generating
macro-clusters are done concurrently in the offline
phase. Additionally, PaStream can detect clusters of
various shapes. However, the quality of the
algorithm gradually decreases as the buffer size
increases.

As another extension of Clustream, CluStream-
GT [19] is an online clustering algorithm for the

field of health. The algorithm clusters patients with
evolving time series data. It is more efficient than
other clusterings in terms of speed, however, the
accuracy is slightly decreased.

The HPStream [20] algorithm has been
developed to improve CluStream for clustering
high-dimensional data streams. It assumes that every
data sample in the algorithm has a weight that
decreases over time, indicating the gradual decay of
a cluster. Consequently, the micro-clusters contain
statistical information on the decay rate of a cluster
as well. However, HPStream is based on the idea of
K-Means clustering; therefore, the final clustering
results have been obtained with a constant number
of clusters.

In [21], a stream clustering algorithm referred to
as CluStream-Hybrid has been proposed and
developed based on the principles of the clustering
process available in CluStream. In the offline phase,
it uses the K-Means++ [22] rather than the classic
K-Means. The results have demonstrated that
CluStream-Hybrid performs runtime computations
at an appropriate speed, and at the same time
maintains the accuracy of high-dimensional data
clustering. However, a constant number of clusters
have been assumed in the algorithm.

In [23] a density-based stream clustering
algorithm called ARD-Stream, has been proposed.
In this method, a dynamic radius threshold is
introduced for each micro-cluster in the online phase
and it creates the final clusters by considering the
shared density and the distance between the micro-
clusters. This algorithm is implemented in MOA
framework and compared with several existing
algorithms, which shows the better performance of
ARD-Stream in the field of data stream clustering.
However, this method assumes a constant speed of
concept evolution and concept drift, whereas in
practice, data streams show different rates of
change.

In [24], a method for clustering short text
streams, termed TEDM (Topic-Enhanced Dirichlet
Model), is introduced. TEDM leverages the
Dirichlet process mixture model and integrates topic
modeling to enhance its clustering capabilities.
TEDM employs forgetting and merging algorithms
to reduce the impact of micro-clusters generated
during single-pass clustering. It identifies and
reassigns documents within inappropriate clusters to
improve topic concentration and clustering
accuracy. Results indicate that TEDM surpasses
several recent models in short text stream clustering.
However, in large-scale corpora, the large data
structures within TEDM may impose limitations on
its performance.

In [25] incremental clustering method for large-
scale mixed data, arriving continuously as data

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

80 80

streams has been proposed. This algorithm employs
a k-prototypes algorithm based on the split
technique in order to tackle the incremental object,
attribute, and class learning spaces at once. So, when
necessary, the final distribution of the clusters has to
be updated. Results show that the method is scalable
and able to upgrade the efficiency of existing k-
prototypes methods when dealing with mixed
streaming data.

Forresi et al. [26] proposed a streaming approach
to schema profiling called DSC+. This method
works under the overlapping sliding window
paradigm and generates profiles by clustering the
extracted schemas using the k-means algorithm.
DSC+ follows a two-phase approach: initially,
schemas are pre-aggregated into a coreset utilizing a
concise data structure known as summaries, after
which clusters are derived from these summaries
within the coreset. However, the number of clusters,
K, is fixed.

EmCStream [27] algorithm has been developed
for embedding high-dimensional input data into two
dimensions. In This algorithm concept drift is
particularly addressed by a stream clustering method
based on data stream embedding. Compared with
popular algorithms such as DenStream and
CluStream, it demonstrates better clustering quality.
However, this approach maintains a fixed number of
final clusters. To address the issue of determining
the optimal number of clusters, K, another algorithm
called NoCStream has been introduced.

In [28] the problem of the evolution of clusters
in a sliding window has been focused. SWClustering
algorithm proposes a new clustering structure called
Exponential Histogram of Cluster Features (EHCF).
This method combines the cluster's temporal feature
vector with exponential histogram. In fact, the
exponential histogram tracks how data within a
cluster evolves while the temporal feature vector
indicates any change in the distribution of the data in
the cluster. EHCF provides a flexible approach for
analyzing cluster evolution. Therefore, improving
the quality of clustering and reducing the need for
computational resources in data stream clustering.

In [29], a data stream clustering algorithm
named CSCS is introduced. This method is
improved by using the sliding window model via
techniques for window aggregation and searching
the nearest neighbor. The proposed algorithm
generates and maintains a statistical summary of
data within a window using sliding window
aggregation. This method employs Local Sensitive
Hash (LSH) to quickly locate neighbors.
Furthermore, it suggests a clustering policy to decide
whether to add a new summary to existing clusters
or conduct clustering on the entire summary.
However, this technique utilizes the weighted k-

means algorithm for re-clustering, with a fixed value
for K.

in [30] a new k-means clustering algorithm for
data streams, called StreamKM++ has been
proposed. This method employs landmark windows
for data clustering. It builds a coreset tree for the
summaries using a k-means++ [22] seeding
approach. However, due to the high cost associated
with building such a tree, it is not suitable for use
with sliding windows [29].

3. The Clustream

The Clustream algorithm [7] employs both
online and phases to cluster data streams. During the
online phase, statistical summaries of the data
stream are stored as micro-clusters. In the offline
phase, these summaries are used to generate final
clusters for the user across different time horizons.
To capture the significance of data at different points
in time, the micro-clusters use snapshots that store
statistical summaries at varying levels of granularity,
forming pyramidal patterns. Newer data samples are
stored at finer granularity while older data samples
are stored at coarser granularity.

To store general information about the data
stream, CluStream uses a cluster feature vector (CF),
which is similar to those used in the BIRCH
algorithm. However, CF vectors in CluStream also
incorporate parameters to store temporal information
about clusters. These vectors are continuously
updated as new data enters the system. The cluster
feature vector in CluStream is a set consisting of
{CF2x, CF1x, CF2t, CF1t, N}, where N is the number
of data samples in the cluster, CF1x is the linear sum
of the cluster data samples, and CF2x its Sum of
Squares of Data Samples. CF1t and CF2t parameters
show the sum of time stamps of data samples in
each micro-cluster and their sum of squares,
respectively. The timestamp information in each
cluster enables the calculation of the mean and
standard deviation for when data samples
corresponding to a particular micro-cluster,
according to Equ (1) and (2).

 (1)

 (2)

During the online phase of the algorithm, the
initial micro-clusters are generated using the
standard K-Means method, where the parameter q =
10K specifies the number of micro-clusters and K
represents the number of final clusters. As the
algorithm runs, the micro-clusters are continuously

 DynamicCluStream: An algorithm Based on CluStream to Improve

Clustering Quality

 81

updated by calculating the Euclidean distance
between the center of the micro-cluster and each
new data sample. If the data sample falls within the
maximum boundary of an existing micro-cluster, it
is absorbed into that cluster, otherwise, a new cluster
is created for that sample. In CluStream, the number
of clusters is maximized in the initial steps, so a
constant number of clusters are generated in each
time unit. Whenever a new micro-cluster is created,
the number of current clusters is reduced by one
through either the removal of an older micro-cluster
or the merging of the two closest micro-clusters.

The radius of each micro-cluster, as given in Equ
(3), is determined based on the root mean square
deviation (RMSD) of the data samples in the cluster
multiplied by a constant factor t = 2. It is important
to note that the calculation of RMSD, as shown in
Equ (4), can only be performed on micro-clusters
that have absorbed more than one data sample. In
the case of a micro-cluster with only one data
sample, the radius is determined heuristically based
on the distance from the nearest micro-cluster.

Radius = t * RMSD (3)

 (4)

During the offline phase, the micro-clusters
obtained from the online phase are utilized along
with a modified version of the K-Means algorithm
to create final clusters in different time horizons.
The final number of clusters is specified by the user
based on the constant parameter K, and the modified
K-Means algorithm is used for the final clustering.
In this process, the micro-clusters are weighted by
their sizes. A major advantage of the modified K-
Means algorithm is that it selects the initial cluster
centers in a more optimal way, based on the weights
of the micro-clusters. This means that clusters with
larger numbers of data samples are given higher
weight and are more likely to be selected.

In general, A limitation of the CluStream
approach is the constant number of clusters in both
online and offline phases, which may not be ideal
for evolving data streams with complex input data.
Additionally, CluStream uses a tilted time window
where expired clusters are not completely removed
along the stream, which reduces the accuracy of
clustering.

The Spark-CluStream algorithm [12] is a
distributed version of the CluStream algorithm. In
the offline phase, this algorithm provides a different
version of the K-Means algorithm. This version
essentially uses a personalized version of the K-
Means algorithm in Spark, with the difference that it
assigns a weighted allocation to each of the micro-

clusters based on the number of data samples they
contain. It also takes a large number of samples
from the centers of the microclusters, which are
considered data samples, to produce better centers
based on cluster weights. After forming the initial
clusters, the algorithm continues with the weighted
K-Means algorithm process.

4. The Proposed Algorithm: DynamicCluStream

This section introduces DynamicCluStream, an
enhanced version of CluStream. The subsequent
section will present the superior performance of this
algorithm when compared to the original version.
Like the original algorithm, the proposed algorithm
involves online and offline phases, both of which are
modified and updated to obtain a better
performance.

4.1. Motivation

The proposed algorithm is inspired by Clustream
in order to improve the Spark-Clustream algorithm.
Essentially, Spark-Clustream is a version of
Clustream adapted for distributed systems within the
Spark framework. The Clustream considers the
number of clusters as fixed. However, a fixed
number of clusters may not be suitable to
accommodate any changes in data stream.
Therefore, in our research, in addition to using the
sliding window in the online phase to better adapt to
the data stream changes, it dynamically determines
the number of final clusters based on the overlap
radius.

Implementing an algorithm in a distributed
environment is to enhance the efficiency of
clustering and its feasibility in the presence of big
data. In some cases, the large volume of data, its
rapid generation, and the need for quick processing
make centralized processing impractical or even
unfeasible. By employing a distributed approach,
clustering can be performed in a distributed
environment by leveraging the computational power
of aggregated computers to efficiently and
effectively process large-scale data. In this research,
representative datasets are used to simulate a
relatively realistic data stream to evaluate the
algorithm's performance where data is rapidly
generated.

4.2. Proposed Method

In the proposed online phase, alterations have
been introduced to the structure of micro-clusters, as
originally presented in the CluStream. The revised
structure replaces the parameters related to cluster
timestamps within the cluster feature vector with a
new parameter called TL. This parameter, represents
the last update time of the micro-cluster and enables
efficient identification and elimination of expired
micro-clusters. In general, expired data are those

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

82 82

generated within a period shorter than the difference
between the current time Tc and temporal window
length (R), as shown in Equ (5).

T < (Tc – R) (5)

Moreover, the number of micro-clusters has not
been assumed to be constant in this phase for greater
dynamicity in clustering, and new micro-clusters are
generated gradually upon requirement in practice. It
should be noted, that the proposed algorithm
behaves like CluStream once the number of micro-
clusters reaches the predetermined maximum.

In fact, window model is designed to identify the
most recent input data for processing. Generally,
more recent information from the stream better
reflects the evolving activities in clusters. Therefore,
establishing a window to retain this data for
clustering purposes can significantly enhance the
algorithm's clustering performance. Unlike other
window models, only a small number of studies
have focused on clustering algorithms with sliding
windows[16, 28, 29, 31]. However, the sliding
window concentrates only on data objects within the
current focus, disregarding older ones. This
approach results in fewer clusters in a window
interval. As a result, in addition to improved
clustering quality, the computation time and
resource usage are reduced [5].

In our method, instead of using a tilted window,
a sliding window is employed for data management.
In the sliding window model, a statistical summary
of data for which the time stamp lies in the range [Tc
- R + 1: Tc] is provided, where R represents the size
of the sliding window, and Tc is the current
timestamp. the sliding window uses only the latest
data to update the model, and expired clusters are
removed based on the same data. Consequently, the
proposed method focuses on recent data, resulting in
more accurate clusters. Further details regarding the
changes made to the online phase of the proposed
method can be found in [31].

 As previously mentioned, CluStream's offline
phase statically defines the number of clusters. This
approach can sometimes lead to the partitioning of a
cluster into multiple smaller clusters or the
aggregation of multiple clusters into a single one,
resulting in a potential degradation of cluster quality.
To address this limitation, our algorithm proposes a
dynamic approach to determine the number of final
clusters by aggregating them based on the
overlapping radius. The degree of overlap between
micro-clusters is determined by their distance,
specifically, two micro-clusters are merged if their
distance is smaller than the RMSD of the second
micro-cluster. This approach ensures that clusters
are combined based on their proximity, leading to
more accurate cluster identification. Furthermore,

the more data in the K-Means algorithm, the better
centers are generated. Therefore, in order to achieve
desired results in the basic algorithm (Spark-
CluStream), micro-clusters are sampled to increase
the data quantity, which in turn incurs additional
costs. However, the proposed algorithm addresses
this challenge by conducting clustering operations in
proportion to the available micro-clusters.

Figure 1 demonstrates the merging of
overlapping clusters. In the first line, the micro-
clusters are converted into RDDs after creation, to
be automatically distributed to different nodes by
Spark and enable parallel processing. From lines 2
to 7, the closest neighbor is identified for each
micro-cluster, and if the overlap criterion is
satisfied, its identifier is returned. Line 8 involves
merging the identifiers of overlapping clusters into a
single identifier. This operation is performed by
traversing the graph with the BFS algorithm on the
adjacency matrix. In line 9, clusters with the same
identifier are merged. Finally, the number of micro-
clusters is returned in line 10, and the final micro-
cluster centers are returned in line 11.

5. Results and Descussion

In this section, we present the results of
experiments conducted to assess the clustering
quality and speed. Furthermore, we examine the

Figure. 1. DynamicCluStream in offline phase

Input: microClusters: get list of microClusters

1: create a data frame to process micro-clusters in

parallel.

2: for all mc ∈ microClusters do

3: find the nearest micro-cluster to mc

4: if dist (mci, mcj) ≤ mcj. rmsd

5: microClusters ← (mc, nearest micro-

cluster)

6: else

7: microClusters ← (mc, -1)

8: end if

9: end for

10: using the BFS algorithm, change the overlapping

micro-clusters
,
 identifiers to a unique identifier.

11: merge all micro-clusters with the same identifier

12: K ← size of microClusters

13: lCentroids ← microClusters.centroids

 DynamicCluStream: An algorithm Based on CluStream to Improve

Clustering Quality

 83

performance of DynamicCluStream in comparison
to Spark-CluStream using real-world datasets.

5.1. Experimental setup and configuration

The algorithm described above has been
implemented within the Apache Spark framework,
specifically as a stream in Spark Streaming. All
experiments were conducted on a Windows 10
device with a Core i5 processor and 16GB of
memory. To evaluate the algorithm's performance,
three real-world datasets were utilized: Cover Type1,
Power Supply2 and KddCup993. These datasets are
described in Table 1.

The Cover Type dataset used for predicting
different types of forest cover across various regions
in the United States. Each sample in the dataset
consists of fifty-four features related to forest cover
information. The Power Supply dataset representing
hourly power supply data from an electricity
company in Italy. It includes power readings from
two sources: power from the main grid and from
other transformed grids. Each sample in the dataset
contains two features. The dataset covers a three-
year period, from 1995 to 1998, capturing the power
supply records. The KDDCup99 dataset is one of the
most popular datasets used for testing stream
clustering algorithms. This dataset comprises non-
uniformly distributed network traffic data records. It
consists of 41 attributes, of which 34 are numerical
features describing the connection. The class label
indicates whether the connection is normal or one of
the 22 types of network attacks. In line with
convention, this paper utilizes the 10 percent subset
of the original dataset, which contains 23 classes, 34
numerical features, and 494,021 instances.

It is worth noting that the data were standardized
using the standardization function available in
Apache Spark. This step was taken to ensure that the
inclusion of data with different scales does not
adversely impact the algorithm's accuracy. The
initialization of the algorithm used N = 2000 data
samples, with a data sample entry rate of N = 1000
per second. The window size was set to R = 4 or R =
6, and the number of micro-clusters was specified as
q = 10K.

Table 1: Description of the real datasets

Dataset Type Instance Dimension Class

CoverType Real 581,012 54 7

PowerSupply Real 29,938 2 24

KddCup99 Real 4,898,431 41 23

1 https://archive.ics.uci.edu/ml/datasets/covertype
2 https://www.cse.fau.edu/~xqzhu/stream.html
3 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

5.2. Clustering quality

One of the most frequent criteria used for
internal evaluation of clustering quality is the sum of
squared distances, which has been used in this paper
for analysis of the favorability of the proposed
algorithm. This index measures the similarity among
members within a cluster by computing the

Euclidean distance between a data point (Xi) and its

closest cluster center (Cxi). SSQ is calculated using

Equ(6).

 (6)

5.3. Clustering speed

Another appropriate criterion used for the
evaluation of the algorithm is clustering speed,
which can be calculated by measuring the execution
time of the algorithm. In other words, the time
required for processing a group of data indicates the
algorithm speed.

5.4. Comparision with the basic Spark-

Clustream

In this section, we compare the proposed
algorithm to the original algorithm using the criteria
introduced in the previous section. Figures 2,3,4 and
5 depict the clustering quality of Spark-CluStream
and DynamicCluStream across sliding windows of
different sizes and the number of final clusters. Each
algorithm was run four times, and the average sum
of squares was calculated to generate the diagrams
in each figure. The results demonstrate that the
proposed algorithm consistently outperforms Spark-
CluStream in terms of clustering performance across
different datasets. On average, the proposed
algorithm achieved up to a 47% increase in accuracy
for the Cover Type dataset and up to a 92% increase
for the Power Supply dataset. Figure 5 reveals that
the results obtained for the Power Supply dataset are
always better than those for the Cover Type dataset.
This is because the Power Supply dataset follows a
uniform distribution.

The original algorithm aims to generate a fixed
number of clusters, K, in the offline phase, which
leads to the merging of clusters with different labels
and a decrease in result quality. In contrast, the
proposed method allows clusters to merge in the
offline phase when necessary and eliminates the
need to generate a predetermined number of
clusters. This approach prevents the merging of
clusters with different labels.

Figures 6 and 7 present the mean running time of
DynamicCluStream and Spark-CluStream for
various values of K. In both experiments, the time

https://www.cse.fau.edu/~xqzhu/stream.html

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

84 84

Figure. 2. Results for the CoverType dataset with parameters N

= 1000, R = 4, and K = 5

Figure. 3. Results for the Power Supply dataset with parameters

N=1000, R= 4, and K = 5

Figure. 4. Results for the Cover Type dataset with parameters

N=1000, R= 6, and K = 10

spent on algorithm initialization has been ignored.
The figures indicate that the execution time of the
algorithms for each dataset increases gradually as
the value of K rises. However, Spark-CluStream
exhibits a relatively minor increase in execution
time since it generates a fixed number of clusters.
On the other hand, the proposed method experiences
increased execution time due to the varying number
of clusters and the removal of expired clusters from
the sliding window. Furthermore, the integration of
overlapping clusters in the offline phase has also
increased the execution time of the algorithm.

 Time complexity of the specifying the number

of clusters in the offline phase

The proposed algorithm begins by identifying the

Figure. 5. Results for the Power Supply dataset with parameters

N=1000, R=6, and K=10

Figure. 6. Processing time for the CoverType dataset

Figure. 7. Data processing time over the Power Supply dataset

closest neighbor for each micro-cluster. If the
overlap criterion is satisfied, the algorithm returns
the identifier of the closest neighbor. However, if a
cluster does not overlap with any others, the
algorithm returns a value of -1. With the assumption
that the number of micro-clusters is q, the cost of
finding overlapping clusters is of O(q2). Next, the
identifiers of clusters located within the other's
boundaries are changed to a single identifier. This
process is accomplished by employing the BFS
algorithm on the adjacency matrix representation of
the graph. The size of the matrix is determined based
on the number of overlapping micro-clusters.
Assuming v represents the number of overlapping
micro-clusters and graph vertices, the time
complexity of traversing the graph is O(v2). In the
best-case scenario where no cluster overlaps exist,
the processing time and the cost remain constant.

 DynamicCluStream: An algorithm Based on CluStream to Improve

Clustering Quality

 85

Finally, the micro-cluster centers are returned as the
number of clusters. The overall time complexity of
the algorithm is O(q2 + v2). However, if the time
complexity of traversing the graph is constant,
meaning O(1) for v2, the complexity is reduced to
O(q2).

 Comparison of the proposed algorithm to the

original one

The proposed algorithm demonstrates superior
performance compared to the original algorithm,
which utilizes K-Means in the offline phase, in
terms of quality and cost. In terms of quality, the
proposed method has performed better than K-
Means in most cases.

However, in some time units, the proposed
algorithm may not perform well in terms of quality
because the length of the window may not be
selected properly. In the sliding window model, the
result of clustering is strongly influenced by size of
the window, so the proper sizing of the window
directly impacts clustering quality. Therefore, the
clustering precision may decrease, particularly when
utilizing a smaller window size. Furthermore, in
datasets with a high rate of data change, the length
of the window should be chosen more carefully [5].

Regarding cost during the offline phase, it
presents lower costs for two primary reasons: firstly,
the cost of the proposed method is deterministic, and
secondly, it is proportional to the number of micro-
clusters rather than the main data.

 The deterministic nature of the proposed
algorithm means that its execution time over a
specific series of input data is always a constant
number. Therefore, the variance of its termination
time is always zero. On the other hand, K-Means is
non-deterministic due to its iterative nature,
requiring multiple iterations for convergence.
Consequently, it exhibits varying execution times
for a specific series of input data, leading to higher
costs compared to the proposed algorithm.

 As mentioned earlier, the proposed algorithm
performs clustering in proportion to the available
micro-clusters. In contrast, K-Means benefits from a
larger amount of data, leading to improved cluster
centers. Therefore, the micro-clusters are sampled to
obtain favorable results in the basic algorithm
(Spark-CluStream) and thus increase the number of
data, which in turn raises the cost. It is important to
note that the proposed algorithm occasionally
utilizes the BFS algorithm to identify overlapping
clusters with identical identifiers. This inclusion
increases the time complexity of the proposed
algorithm.

Table 2 shows the average percentage
improvement of the proposed algorithm
(DynamicCluStream) as compared to the basic

algorithm (Spark-CluStream) with the internal
evaluation criterion (SSQ).

5.5. Comparosion to the other works

In this section, we compared our proposed
method with recent data stream clustering
algorithms: SWClustering, StreamKM++, CSCS,
SClustream, all of which is described in Section 2.
To evaluate the clustering quality, we use the Sum
of Squared Distance (SSQ) criteria.

 Table 3 presents the average SSQ results with
various datasets by each method.
DynamicClustream has consistently get the best
results compared to other algorithms on all three
datasets. It accurately assigns data to appropriate
clusters, resulting in the highest performance.

All algorithms except StreamKM++ utilize the
sliding window model. The StreamKM++ algorithm
shows almost the same quality as the CSCS
algorithm in the cover type dataset. It appears that
the k-means algorithm works well to find good
initial centers. However, this operation is time-
intensive [29]. The SClustream algorithm provides a
lower quality compared to other algorithms in the
CoverType dataset. It is probably because this
algorithm only reported the clustering results during
the online phase. On the kddCup99 dataset, the
SWClustering algorithm has provided better results
than the rest of the algorithms, however, the
proposed method consistently delivers superior
results across all the three datasets.

Approximate results of the StreamKM++
algorithm on both the CoverType and KddCup99
datasets, as well as the SWclustering algorithm on

Table 2: Precision improvement of the DynamicClustream over

Spark Clustream

Dataset Config
Spark-

Clustream

Dynamic-

Custream

Improved

(%)

CoverType
N=1000, R=4,

K=5
237591 .1 125205 .8 45%

PowerSupply
N=1000, R=4,

K=5
361.277 33.5373 92%

CoverType
N=1000, R=6,

K=10
253426.3 138723.4 47%

PowerSupply
N=1000, R=6,

K=10
839.4457 59.60009 90%

Table 3: Average SSQ results of compared methods on real

datasets

Method CoverType KddCup99 PowerSupply

StreamKM++ ≈ 3.47E+09 ≈ 2.50E+11 -

SClustream ≈ 3.00E+12 - -

SWclustering ≈ 9.63E+09 ≈ 1.59E+08 -

CSCS ≈ 2.13E+09 ≈ 6.67E+10 -

Dynamic-

Clustream
2.38E+05 2.91E+05a 3.61E+02

a as usual, the experiment is done using the 10 percent subset of the original
dataset.

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

86 86

the CoverType dataset, are obtained from reference
[29]. Results for the remaining algorithms are from
their respective references.

6. Conclusion

In this paper, a highly efficient algorithm called
DynamicCluStream was introduced to cluster big
data streams. The proposed algorithm is an
improvement over Spark-CluStream, which is
implemented within the Apache Spark framework.
DynamicCluStream generates clusters from a sliding
window and dynamically detects the number of final
clusters in the offline phase by aggregating
overlapping clusters. This dynamic approach
significantly enhances the performance of clustering.
In contrast, Spark-CluStream statically specifies the
number of final clusters based on the K-Means
algorithm, which reduces the quality of the final
clusters. Experimental evaluations were conducted
on real-world datasets, including coverType,
powerSupply, and kddCupp99. These evaluations
demonstrated that the proposed algorithm
outperforms Spark-CluStream and other algorithms
in terms of clustering quality. However, the speed of
the proposed algorithm has reduced due to the costly
operations of removal and merging.

In future works, we will focus on the
improvement of the proposed algorithm for more
efficient and timely clustering. Another suggestion
involves finding solutions for outlier and noise
detection to improve the quality of the induced
clusters.

Declarations

Funding
This research did not receive any grant from
funding agencies in the public, commercial, or
non-profit sectors.

Authors' contributions
During the preparation of this work, the authors
used ChatGPT in order to enhance text clarity
and writing. After using this tool, the authors
reviewed and edited the content as needed. The
authors take full responsibility for the content of
the publication.

SA: Study design, acquisition of data,
interpretation of the results, statistical analysis,
drafting the manuscript;

MY: Study design, interpretation of the results,
drafting the manuscript, revision of the
manuscript, Supervision;

MM: Supervision, drafting the manuscript,
revision of the manuscript.

Conflict of interest

The authors declare that no conflicts of interest
exist.

References

[1] A. Zubaroğlu and V. Atalay, "Data stream clustering: a
review," Artificial Intelligence Review, vol. 54, no. 2, pp.
1201-1236, 2021, https://doi.org/10.1007/s10462-020-
09874-x.

[2] H. L. Nguyen, Y. K. Woon and W. K. Ng, "A survey on
data stream clustering and classification," Knowledge and
information systems, vol. 45, pp. 535-569, 2015,
https://doi.org/10.1007/s10115-014-0808-1.

[3] M. Carnein and H. Trautmann, "Optimizing data stream
representation: An extensive survey on stream clustering
algorithms," Business & Information Systems Engineering,
vol. 61, pp. 277-297, 2019, https://doi.org/10.1007/s12599-
019-00576-5.

[4] S. Mansalis, E. Ntoutsi, N. Pelekis and Y. Theodoridis,
"An evaluation of data stream clustering algorithms,"
Statistical Analysis and Data Mining: The ASA Data
Science Journal, vol. 11, no. 4, pp. 167-187, 2018.,
https://doi.org/10.1002/sam.11380.

[5] X. Wang, Z. Wang, Z. Wu, S. Zhang, X. Shi and L. Lu,
"Data Stream Clustering: An In-depth Empirical Study,"
Proceedings of the ACM on Management of Data, vol. 1,
no. 2, pp. 1-26, 2023, https://doi.org/10.1145/3589307.

[6] S. Tang, B. He, C. Yu, Y. Li and K. Li, "A survey on spark
ecosystem: Big data processing infrastructure, machine
learning, and applications," In IEEE Transactions on
Knowledge and Data Engineering, vol. 34, no. 1, pp. 71-
91, Jan. 2022,
https://doi.org/10.1109/TKDE.2020.2975652.

[7] C. C. Aggarwal, S. Y. Philip, J. Han and J. Wang, "A
framework for clustering evolving data streams," in
Proceedings 2003 VLDB conference, Elsevier, 2003,
https://doi.org/10.1016/B978-012722442-8/50016-1.

[8] F. Ramzan and M. Ayyaz, "A comprehensive review on
data stream mining techniques for data classification; and
future trends," EPH-International Journal of Science And
Engineering, vol. 9, no. 3, pp. 1-29, 2023,
https://doi.org/10.53555/ephijse.v9i3.201.

[9] T. Zhang, R. Ramakrishnan and M. Livny, "BIRCH: an
efficient data clustering method for very large databases,"
ACM sigmod record, vol. 25, no. 2, pp. 103-114, 1996,
https://doi.org/10.1145/235968.233324.

[10] F. Cao, M. Estert, W. Qian and A. Zhou, "Density-based
clustering over an evolving data stream with noise," in
Proceedings of the 2006 SIAM international conference on
data mining, SIAM, 2006,
https://doi.org/10.1137/1.9781611972764.29.

[11] H. Karau, A. Konwinski, P. Wendell and M. Zaharia,
Learning spark: lightning-fast big data analysis, O'Reilly
Media, Inc., 2015.

[12] O. Backhoff and E. Ntoutsi, "Scalable online-offline stream
clustering in apache spark," in 2016 IEEE 16th
International Conference on Data Mining Workshops
(ICDMW), Barcelona, Spain, IEEE, 2016, pp. 37-44, 1
https://doi.org/0.1109/ICDMW.2016.0014

[13] X. Zhang, Z. Qian, S. Shen, J. Shi, S. Wang, "Streaming
massive electric power data analysis based on spark
streaming. in Database Systems for Advanced
Applications: DASFAA 2019 International Workshops:
BDMS, BDQM, and GDMA, Chiang Mai, Thailand, April
22–25, 2019, Proceedings 24, Springer, 2019,
https://doi.org/10.1007/978-3-030-18590-9_14.

[14] X. Wang and Q. Sun, "Research on Clustream Algorithm
Based on Spark," in 2017 10th International Symposium on
Computational Intelligence and Design (ISCID),

 DynamicCluStream: An algorithm Based on CluStream to Improve

Clustering Quality

 87

Hangzhou, China, IEEE, 2017, pp. 219-222,
https://doi.org/10.1109/ISCID.2017.111.

[15] Z. Hua, T. Du, S. Qu and G. Mou, "A data stream
clustering algorithm based on density and extended grid,"
in Intelligent Computing Theories and Application: 13th
International Conference, ICIC 2017, Liverpool, UK,
August 7-10, 2017, Proceedings, Part II 13, 2017.
https://doi.org/10.1007/978-3-319-63312-1_61.

[16] D. Sayed, S. Rady, and M. Aref, "Enhancing CluStream
algorithm for CLUSTERING big data streaming over
sliding window," in 2020 12th International Conference on
Electrical Engineering (ICEENG), Cairo, Egypt, IEEE,
2020, pp. 108-114,
https://doi.org/10.1109/ICEENG45378.2020.9171705.

[17] A. Bagozi, D. Bianchini and V. De Antonellis, "Multi-level
and relevance-based parallel clustering of massive data
streams in smart manufacturing," Information Sciences,
vol. 577, pp. 805-823, 2021,
https://doi.org/10.1016/j.ins.2021.08.039.

[18] P. Huang, X. Li and B. Yuan, "A parallel GPU-based
approach to clustering very fast data streams," in
Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, 2015, pp. 23-
32,. https://doi.org/10.1145/2806416.2806545.

[19] E. M. Grua, M. Hoogendoorn, I. Malavolta, P. Lago and A.
E. Eiben, "Clustream-GT: Online clustering for
personalization in the health domain," in IEEE/WIC/ACM
International Conference on Web Intelligence, 2019, pp.
270-275, https://doi.org/10.1145/3350546.3352529.

[20] C. C. Aggarwal, J. Han, J. Wang, P. S. Yu, "A framework
for projected clustering of high dimensional data streams,"
in Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30, 2004, pp. 852-863,
https://doi.org/10.1016/B978-012088469-8/50075-9.

[21] A. Kumar, A. Singh and R. Singh, "An efficient hybrid-
clustream algorithm for stream mining," in 2017 13th
International Conference on Signal-Image Technology &
Internet-Based Systems (SITIS). Jaipur, India, IEEE, 2017,
pp. 430-437, https://doi.org/10.1109/SITIS.2017.77.

[22] D. Arthur and S. Vassilvitskii, "k-means++: The
advantages of careful seeding," in Soda, 2007.

[23] A. Faroughi, R. Boostani, H. Tajalizadeh and R. Javidan,
"ARD-Stream: An adaptive radius density-based stream
clustering," Future Generation Computer Systems, vol.
149, pp. 416-431, 2023,
https://doi.org/10.1016/j.future.2023.07.027.

[24] K. Liu, J. He and Y. Chen, "A topic-enhanced dirichlet
model for short text stream clustering," Neural Computing
and Applications, p. 1-16, 2024,
https://doi.org/10.1007/s00521-024-09480-w.

[25] S. Gorrab, F. Ben Rejab, and K. Nouira, "Split incremental
clustering algorithm of mixed data stream," Progress in
Artificial Intelligence, vol. 13, no. 1, pp. 51-64, 2024,
https://doi.org/10.1007/s13748-024-00316-1.

[26] C. Forresi, M. Francia, E. Gallinucci and M. Golfarelli,
"Dynamic Stream Clustering for Real-Time Schema
Profiling with Dsc+", unpublished, Available at SSRN
4701020.

[27] A. Zubaroğlu and V. Atalay, "Online embedding and
clustering of evolving data streams," Statistical Analysis
and Data Mining: The ASA Data Science Journal, vol. 16,
no. 1, pp. 29-44, 2023, https://doi.org/10.1002/sam.11590.

[28] A. Zhou, F. Cao, W. Qian and C. Jin, "Tracking clusters in
evolving data streams over sliding windows," Knowledge

and Information Systems, vol. 15, pp. 181-214, 2008,
https://doi.org/10.1007/s10115-007-0070-x.

[29] J. Youn, J. Shim and S. G. Lee, "Efficient data stream
clustering with sliding windows based on locality-sensitive
hashing," IEEE Access, vol. 6, pp. 63757-63776, 2018,
https://doi.org/10.1109/ACCESS.2018.2877138.

[30] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot,
C. Lammersen and C. Sohler, "Streamkm++ a clustering
algorithm for data streams," Journal of Experimental
Algorithmics (JEA), vol. 17. pp. 2.1-2.30. 2012,
https://doi.org/10.1145/2133803.2184450.

[31] S. Ahsani, M.Y. Sanati and M. Mansoorizadeh,
"Improvement of CluStream algorithm using sliding
window for the clustering of data streams," in 2021 11th
International Conference on Computer Engineering and
Knowledge (ICCKE), Mashhad, Islamic Republic of Iran,
IEEE, 2021, pp. 434-440,
https://doi.org/10.1109/ICCKE54056.2021.9721505.

Sahar Ahsani received her MSc

in software engineering from Bu-

Ali Sina university, Hamedan,

Iran In 2021. And her Bachelors

Degree in software engineering

from Pasargad university, Shiraz,

Iran, In 2011. She works at Dotin

company as a Data Engineer. Her

professional and research interests include big data

processing, analysis, and mining, and the latest

technologies in this field.

 Morteza Yousef Sanati is an

assistant professor in the computer

engineering department of Bu-Ali

Sina University. He received his

Ph.D. from McMaster University

in 2016 and his MSc (2002) and

BSc (2000) from Sharif university

of technology, all in software

engineering. His main research topics are big data

analysis, data mining and blockchain.

 Muharram Mansoorizadeh is

an associate professor at the

Computer Engineering

Department of Bu-Ali Sina

University. He received his BSc

degree in software engineering

from the University of Isfahan,

Isfahan, Iran, in 2001, and his MSc degree in

software engineering and the PhD in computer

engineering from Tarbiat Modares University,

Tehran, Iran, in 2004 and 2010, respectively. His

current research interests include machine learning,

affective computing and information retrieval.

