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A B S T R A C T  

Data streams are continuous flows of data objects generated at high rates, requiring real-time processing in a 

single pass. Clustering algorithms play a vital role in analyzing data streams by grouping similar data 

samples. Among various time windows for evolving streams, the sliding window method gradually moves over 

the data, focusing on the most recent information and improving clustering accuracy while reducing memory 

requirements. The development of distributed computing frameworks like Apache Spark has addressed the 

limitations of traditional tools in processing big data, including data streams. This paper presents the 

DynamicCluStream algorithm, an enhancement over Spark-CluStream, which employs a two-phase 

clustering approach with precise clustering of recent data. The algorithm dynamically determines the number 

of clusters by merging overlapping clusters during the offline phase, resulting in significant improvements in 

cluster precision. Experimental results show that it performs up to 47 percent better on average in terms of 

precision on the CoverType dataset and up to 92 percent better on average in terms of precision on the 

PowerSupply dataset.  Although the algorithm is slower due to data sample removal and cluster integration, 

its impact is negligible in a distributed environment. 

Keywords— Data mining, Online Clustering, Dynamic Clustering, Stream Clustering, CluStream, Dynamic 

CluStream. 
 

1. Introduction  

A data stream is a continuous flow of data 
objects that are generated at different intervals in 
large quantities and at a high rate, unlike traditional 
datasets that are stored in a warehouse. Analyzing 
data streams is crucial and beneficial in various real-
world applications, including customer behavior 
analysis, weather forecasting, stock exchange, urban 
traffic monitoring, and earthquake prediction [1]. 
Given the unique nature of a data stream, the 
available data can only be observed once and must 
be processed in real-time in a single pass [1, 2].  

Clustering is a popular unsupervised learning 
technique that divides data samples into relatively 
homogeneous groups based on maximum data 
similarity within each group and minimum 
similarity between members of different groups. 
Data stream clustering algorithms receive the input 
data using a temporal window and process a part of 

it that fits within the window. There is a wide 
variety of time windows for evolving streams, 
including landmark, fading, tilted, and sliding 
windows as the most common instances [2-5]. 
Compared to the other window types, the sliding 
window method gradually moves over the data and 
disregards instances that have already been 
inspected, focusing solely on the most recent data. 
This approach enhances the accuracy of the 
clustering algorithm and reduces the amount of 
memory needed for its operation [6]. 

Most of data stream clustering algorithms consist 
of online and offline phases. One of the most 
popular of which is Clustream [7]. The Clustream 
algorithm, which is based on partitioning, operates 
in two phases. In the online phase, summaries of the 
data stream are stored as micro-clusters. In the 
offline phase, it performs a k-means clustering 
algorithm over the generated summaries to obtain k 
user-specified macro-clusters [5, 8].  In general, the 
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Clustream algorithm serves as a fundamental 
benchmark often used in comparison scenarios. It's 
evident that the vast majority of algorithms use the 
concepts introduced by BIRCH [9], Clustream, or 
Denstream [10]. 

The development of distributed computing 
frameworks such as Hadoop has been driven by the 
limitations of traditional tools and techniques in 
effectively processing and extracting information 
from big data, particularly data streams. The demand 
for real-time data analysis has led to the 
development of powerful processing engines like 
Apache Spark, which builds on the MapReduce 
model used in Hadoop and can handle various 
computations like interactive queries and data 
stream processing. Compared to Hadoop, Spark is 
faster because it uses main memory for data 
processing and maintenance, which increases 
program processing speed [6, 11]. 

The paper introduces the DynamicCluStream 
algorithm, emphasizing scalability and precision . 
Our method represents an enhancement over Spark-
Clustream [12], which serves as a distributed 
version of Clustream. DynamicCluStream employs a 
two-phase approach similar to basic CluStream, but 
with more precise clustering of the recent data. 
During the online phase the algorithm adjusts the 
window type. Instead of the tilted window that is 
used in original algorithm, our proposed algorithm 
utilizes a sliding window mechanism to locally 
process data. In the sliding window, statistical 
summary of data is extracted from [Tc - R + 1: Tc], 
where Tc is current time and R represents the size of 
the sliding window. Additionally,  unlike the original 
algorithm that determine k user specific clusters with 
k-means algorithm, our method merges overlapping 
clusters using the common radius concept during the 
offline phase and dynamically determines the 
number of clusters. The degree of overlap between 
pairs of micro-clusters is measured based on their 
RMSD distances, and sufficiently close micro-
clusters are merged. This approach ensures that 
clusters are combined based on their proximity. This 
results in 40-90% improvement in cluster precision 
in certain time intervals. Although the algorithm is 
slower due to data sample removal and cluster 
integration, this is hardly noticeable in a distributed 
environment. 

In summary, the main contributions of this 
research are as follows: 

1. The use of sliding windows in the online 
phase ensures that only data within the 
window is processed, leading to more 
concentrated clusters. 

2. The proposed method eliminates the need to 
predetermine number of clusters in the 
offline phase. This approach prevents 

merging clusters with different labels and 
results in higher-quality clusters. 

3. The final clustering in the offline phase is 
performed based on identifying the nearest 
neighbor for each micro-cluster. If the 
overlap criterion is satisfied, two clusters are 
merged. 

4. The proposed approach is implemented in 
the Apache Spark distributed computing 
framework. 

The structure of the paper is as follows: Section 
2 reviews the literature on data stream clustering. 
The functioning of CluStream is explained in 
Section 3. Section 4 provides a comprehensive 
overview of the proposed algorithm. In Section 5, 
the results of an experimental study and evaluation 
are presented, and the final section summarizes the 
conclusions. 

2. Previous Work 

In this section, a review of several data stream 
clustering algorithms including CluStream is 
presented. Furthermore, the CluStream is explored 
in more details, since it has numerous modifications 
and adaptations in recent years. 

 One of the recent works in this area is the 
DstreamEPK discussed by Zhang et al. [13]. The 
algorithm improves upon CluStream and K-Means 
for clustering a stream of data. The study analyzed a 
significant amount of data on users' electricity 
consumption, with the aim of optimally allocating 
power resources based on an analysis of users' 
needs, behaviors, and habits through clustering. 
DstreamEPK employs a two-phase online-offline 
clustering method following CluStream, and utilizes 
a time-decay technique to periodically update and 
remove micro-clusters, reducing the influence of 
historical data on clustering. In the offline phase, the 
Canopy algorithm is used to identify the optimal 
number of initial clusters (K) for K-Means. Also, a 
highly efficient parallel K-Means algorithm is 
presented. The experimental results indicate that the 
proposed approach is stable, efficient, and capable 
of clustering power data with greater accuracy. 
However, it should be noted that the number of 
clusters in the offline phase remains fixed. 

A clustering algorithm named CCluStream was 
introduced in [14], which is an improvement on the 
CluStream algorithm. CCluStream utilizes the 
parallel implementation in Spark Streaming and 
enhances the offline phase of CluStream. The offline 
phase of CCluStream combines the Canopy and K-
Means algorithms, where the Canopy algorithm 
specifies the value of K in K-Means resulting in a 
more efficient K-Means algorithm. The experiments 
demonstrate that CCluStream is more efficient and 
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accurate than the original algorithm, but in some 
cases, the accuracy of the algorithm decreases with 
an increase in the number of computing nodes. 

Hua et al. [15] described the DEGDS clustering 
model which enhances CluStream by combining the 
strengths of density-based and grid-based clustering 
algorithms. This approach enables the algorithm to 
produce various cluster shapes and detect outliers 
while taking advantage of the parallel processing 
capabilities of the Apache Spark framework to 
enhance clustering efficiency. The study results 
indicate that the DEGDS algorithm outperforms 
CluStream in both accuracy and efficiency. 
However, this approach may not be suitable for 
high-dimensional data due to its reliance on a grid-
based model, and the quality of the clustering may 
depend on the network granularity. Additionally, the 
use of the grid model may cause a decrease in 
execution speed as the number of nodes increases 
due to its higher memory requirements. 

Sayed et al. [16] introduced the SCluStream as 
an upgraded version of CluStream for identifying 
clusters using a sliding window. The experiments 
have shown that the algorithm outperforms the basic 
algorithm in terms of both accuracy and scalability. 
However, the paper does not explicitly present a 
mechanism for removing data, and these 
modifications were only evaluated during the online 
phase of the algorithm. 

Bagozi et al. [17] presented  the multilevel 
parallelization approach for clustering big data 
streams which  utilizes CluStream within the 
Apache Spark distributed framework to identify 
anomalies and manage outliers. This method offers 
more powerful parallelization and efficient resource 
utilization and can adjust parallelism at different 
levels during operation to reduce computational load 
and execution time. Although the proposed approach 
has demonstrated scalability and efficiency, it may 
become less scalable if the buffer size exceeds the 
maximum number of micro-clusters allowed. 
Additionally, it's important to note that the method 
only focuses on the online phase of CluStream. 

Huang et al. proposed a GPU-based parallelized 
version of the CluStream, PaStream[18]. This 
algorithm enables the parallel implementation of 
clustering through buffering the data stream. 
Measuring the distance between micro-clusters, 
calculating timestamps of them for decision-making 
on the removal of micro-clusters, and generating 
macro-clusters are done concurrently in the offline 
phase. Additionally, PaStream can detect clusters of 
various shapes. However, the quality of the 
algorithm gradually decreases as the buffer size 
increases. 

As another extension of Clustream, CluStream-
GT [19] is an online clustering algorithm for the 

field of health. The algorithm clusters patients with 
evolving time series data. It is more efficient than 
other clusterings in terms of speed, however, the 
accuracy is slightly decreased. 

The HPStream [20] algorithm has been 
developed to improve CluStream for clustering 
high-dimensional data streams. It assumes that every 
data sample in the algorithm has a weight that 
decreases over time, indicating the gradual decay of 
a cluster. Consequently, the micro-clusters contain 
statistical information on the decay rate of a cluster 
as well. However, HPStream is based on the idea of 
K-Means clustering; therefore, the final clustering 
results have been obtained with a constant number 
of clusters. 

In [21], a stream clustering algorithm referred to 
as CluStream-Hybrid has been proposed and 
developed based on the principles of the clustering 
process available in CluStream. In the offline phase, 
it uses the K-Means++ [22] rather than the classic 
K-Means. The results have demonstrated that 
CluStream-Hybrid performs runtime computations 
at an appropriate speed, and at the same time 
maintains the accuracy of high-dimensional data 
clustering. However, a constant number of clusters 
have been assumed in the algorithm. 

In [23] a density-based stream clustering 
algorithm called ARD-Stream, has been proposed. 
In this method, a dynamic radius threshold is 
introduced for each micro-cluster in the online phase 
and it creates the final clusters by considering the 
shared density and the distance between the micro-
clusters. This algorithm is implemented in MOA 
framework and  compared with several existing 
algorithms, which shows the better performance of 
ARD-Stream in the field of data stream clustering. 
However, this method assumes a constant speed of 
concept evolution and concept drift, whereas in 
practice, data streams show different rates of 
change. 

In [24], a method for clustering short text 
streams, termed TEDM (Topic-Enhanced Dirichlet 
Model), is introduced. TEDM leverages the 
Dirichlet process mixture model and integrates topic 
modeling to enhance its clustering capabilities. 
TEDM employs forgetting and merging algorithms 
to reduce the impact of micro-clusters generated 
during single-pass clustering. It identifies and 
reassigns documents within inappropriate clusters to 
improve topic concentration and clustering 
accuracy.  Results indicate that TEDM surpasses 
several recent models in short text stream clustering. 
However, in large-scale corpora, the large data 
structures within TEDM may impose limitations on 
its performance. 

In [25] incremental clustering method for large-
scale mixed data, arriving continuously as data 
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streams has been proposed. This algorithm employs 
a k-prototypes algorithm based on the split 
technique in order to tackle the incremental object, 
attribute, and class learning spaces at once. So, when 
necessary, the final distribution of the clusters has to 
be updated. Results show that the method is scalable 
and able to upgrade the efficiency of existing k-
prototypes methods when dealing with mixed 
streaming data. 

Forresi et al. [26] proposed a streaming approach 
to schema profiling called DSC+.  This method 
works under the overlapping sliding window 
paradigm and generates profiles by clustering the 
extracted schemas using the k-means algorithm.  
DSC+ follows a two-phase approach: initially, 
schemas are pre-aggregated into a coreset utilizing a 
concise data structure known as summaries, after 
which clusters are derived from these summaries 
within the coreset. However, the number of clusters, 
K, is fixed. 

EmCStream [27] algorithm has been developed 
for embedding high-dimensional input data into two 
dimensions. In This algorithm concept drift is 
particularly addressed by a stream clustering method 
based on data stream embedding. Compared with 
popular algorithms such as DenStream and 
CluStream, it demonstrates better clustering quality. 
However, this approach maintains a fixed number of 
final clusters. To address the issue of determining 
the optimal number of clusters, K, another algorithm 
called NoCStream has been introduced. 

In [28] the problem of the evolution of clusters 
in a sliding window has been focused. SWClustering 
algorithm proposes a new clustering structure called 
Exponential Histogram of Cluster Features (EHCF). 
This method combines the cluster's temporal feature 
vector with exponential histogram. In fact, the 
exponential histogram tracks how data within a 
cluster evolves while the temporal feature vector 
indicates any change in the distribution of the data in 
the cluster. EHCF provides a flexible approach for 
analyzing cluster evolution. Therefore, improving 
the quality of clustering and reducing the need for 
computational resources in data stream clustering. 

In [29], a data stream clustering algorithm 
named CSCS is introduced. This method is 
improved by using the sliding window model via 
techniques for window aggregation and searching 
the nearest neighbor. The proposed algorithm 
generates and maintains a statistical summary of 
data within a window using sliding window 
aggregation. This method employs Local Sensitive 
Hash (LSH) to quickly locate neighbors. 
Furthermore, it suggests a clustering policy to decide 
whether to add a new summary to existing clusters 
or conduct clustering on the entire summary.   
However, this technique utilizes the weighted k-

means algorithm for re-clustering, with a fixed value 
for K. 

in [30] a new k-means clustering algorithm for 
data streams, called StreamKM++ has been 
proposed. This method employs landmark windows 
for data clustering. It builds a coreset tree for the 
summaries using a k-means++ [22] seeding 
approach. However, due to the high cost associated 
with building such a tree, it is not suitable for use 
with sliding windows [29]. 

3. The Clustream 

The Clustream algorithm [7] employs both 
online and phases to cluster data streams. During the 
online phase, statistical summaries of the data 
stream are stored as micro-clusters. In the offline 
phase, these summaries are used to generate final 
clusters for the user across different time horizons. 
To capture the significance of data at different points 
in time, the micro-clusters use snapshots that store 
statistical summaries at varying levels of granularity, 
forming pyramidal patterns. Newer data samples are 
stored at finer granularity while older data samples 
are stored at coarser granularity. 

To store general information about the data 
stream, CluStream uses a cluster feature vector (CF), 
which is similar to those used in the BIRCH 
algorithm. However, CF vectors in CluStream also 
incorporate parameters to store temporal information 
about clusters. These vectors are continuously 
updated as new data enters the system. The cluster 
feature vector in CluStream is a set consisting of 
{CF2x, CF1x, CF2t, CF1t, N}, where N is the number 
of data samples in the cluster, CF1x is the linear sum 
of the cluster data samples, and CF2x its Sum of 
Squares of Data Samples. CF1t and CF2t parameters 
show the sum of time stamps of data samples in 
each micro-cluster and their sum of squares, 
respectively. The timestamp information in each 
cluster enables the calculation of the mean and 
standard deviation for when data samples 
corresponding to a particular micro-cluster, 
according to Equ (1) and (2). 

                                (1) 

         (2) 

During the online phase of the algorithm, the 
initial micro-clusters are generated using the 
standard K-Means method, where the parameter q = 
10K specifies the number of micro-clusters and K 
represents the number of final clusters. As the 
algorithm runs, the micro-clusters are continuously 
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updated by calculating the Euclidean distance 
between the center of the micro-cluster and each 
new data sample. If the data sample falls within the 
maximum boundary of an existing micro-cluster, it 
is absorbed into that cluster, otherwise, a new cluster 
is created for that sample. In CluStream, the number 
of clusters is maximized in the initial steps, so a 
constant number of clusters are generated in each 
time unit. Whenever a new micro-cluster is created, 
the number of current clusters is reduced by one 
through either the removal of an older micro-cluster 
or the merging of the two closest micro-clusters. 

The radius of each micro-cluster, as given in Equ 
(3), is determined based on the root mean square 
deviation (RMSD) of the data samples in the cluster 
multiplied by a constant factor t = 2. It is important 
to note that the calculation of RMSD, as shown in 
Equ (4), can only be performed on micro-clusters 
that have absorbed more than one data sample. In 
the case of a micro-cluster with only one data 
sample, the radius is determined heuristically based 
on the distance from the nearest micro-cluster. 

Radius = t * RMSD                                              (3) 

                  (4) 

During the offline phase, the micro-clusters 
obtained from the online phase are utilized along 
with a modified version of the K-Means algorithm 
to create final clusters in different time horizons. 
The final number of clusters is specified by the user 
based on the constant parameter K, and the modified 
K-Means algorithm is used for the final clustering. 
In this process, the micro-clusters are weighted by 
their sizes. A major advantage of the modified K-
Means algorithm is that it selects the initial cluster 
centers in a more optimal way, based on the weights 
of the micro-clusters. This means that clusters with 
larger numbers of data samples are given higher 
weight and are more likely to be selected.  

In general, A limitation of the CluStream 
approach is the constant number of clusters in both 
online and offline phases, which may not be ideal 
for evolving data streams with complex input data. 
Additionally, CluStream uses a tilted time window 
where expired clusters are not completely removed 
along the stream, which reduces the accuracy of 
clustering. 

The Spark-CluStream algorithm [12] is a 
distributed version of the CluStream algorithm. In 
the offline phase, this algorithm provides a different 
version of the K-Means algorithm. This version 
essentially uses a personalized version of the K-
Means algorithm in Spark, with the difference that it 
assigns a weighted allocation to each of the micro-

clusters based on the number of data samples they 
contain. It also takes a large number of samples 
from the centers of the microclusters, which are 
considered data samples, to produce better centers 
based on cluster weights. After forming the initial 
clusters, the algorithm continues with the weighted 
K-Means algorithm process. 

4. The Proposed Algorithm: DynamicCluStream 

This section introduces DynamicCluStream, an 
enhanced version of CluStream. The subsequent 
section will present the superior performance of this 
algorithm when compared to the original version. 
Like the original algorithm, the proposed algorithm 
involves online and offline phases, both of which are 
modified and updated to obtain a better 
performance.  

4.1. Motivation 

The proposed algorithm is inspired by Clustream 
in order to improve the Spark-Clustream algorithm. 
Essentially, Spark-Clustream is a version of 
Clustream adapted for distributed systems within the 
Spark framework. The Clustream considers the 
number of clusters as fixed. However, a fixed 
number of clusters may not be suitable to 
accommodate any changes in data stream. 
Therefore, in our research, in addition to using the 
sliding window in the online phase to better adapt to 
the data stream changes, it dynamically determines 
the number of final clusters based on the overlap 
radius.  

Implementing an algorithm in a distributed 
environment is to enhance the efficiency of 
clustering and its feasibility in the presence of big 
data. In some cases, the large volume of data, its 
rapid generation, and the need for quick processing 
make centralized processing impractical or even 
unfeasible. By employing a distributed approach, 
clustering can be performed in a distributed 
environment by leveraging the computational power 
of aggregated computers to efficiently and 
effectively process large-scale data. In this research, 
representative datasets are used to simulate a 
relatively realistic data stream to evaluate the 
algorithm's performance where data is rapidly 
generated. 

4.2. Proposed Method 

In the proposed online phase, alterations have 
been introduced to the structure of micro-clusters, as 
originally presented in the CluStream. The revised 
structure replaces the parameters related to cluster 
timestamps within the cluster feature vector with a 
new parameter called TL. This parameter, represents 
the last update time of the micro-cluster and enables 
efficient identification and elimination of expired 
micro-clusters. In general, expired data are those 
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generated within a period shorter than the difference 
between the current time Tc and temporal window 
length (R), as shown in Equ (5). 

T < (Tc – R)                                              (5) 

Moreover, the number of micro-clusters has not 
been assumed to be constant in this phase for greater 
dynamicity in clustering, and new micro-clusters are 
generated gradually upon requirement in practice. It 
should be noted, that the proposed algorithm 
behaves like CluStream once the number of micro-
clusters reaches the predetermined maximum. 

In fact, window model is designed to identify the 
most recent input data for processing. Generally, 
more recent information from the stream better 
reflects the evolving activities in clusters. Therefore, 
establishing a window to retain this data for 
clustering purposes can significantly enhance the 
algorithm's clustering performance. Unlike other 
window models, only a small number of studies 
have focused on clustering algorithms with sliding 
windows[16, 28, 29, 31]. However, the sliding 
window concentrates only on data objects within the 
current focus, disregarding older ones.  This 
approach results in fewer clusters in a window 
interval. As a result, in addition to improved 
clustering quality, the computation time and 
resource usage are reduced [5].  

In our method, instead of using a tilted window, 
a sliding window is employed for data management. 
In the sliding window model, a statistical summary 
of data for which the time stamp lies in the range [Tc 
- R + 1: Tc] is provided, where R represents the size 
of the sliding window, and Tc is the current 
timestamp. the sliding window uses only the latest 
data to update the model, and expired clusters are 
removed based on the same data. Consequently, the 
proposed method focuses on recent data, resulting in 
more accurate clusters. Further details regarding the 
changes made to the online phase of the proposed 
method can be found in [31]. 

 As previously mentioned, CluStream's offline 
phase statically defines the number of clusters. This 
approach can sometimes lead to the partitioning of a 
cluster into multiple smaller clusters or the 
aggregation of multiple clusters into a single one, 
resulting in a potential degradation of cluster quality. 
To address this limitation, our algorithm proposes a 
dynamic approach to determine the number of final 
clusters by aggregating them based on the 
overlapping radius. The degree of overlap between 
micro-clusters is determined by their distance, 
specifically, two micro-clusters are merged if their 
distance is smaller than the RMSD of the second 
micro-cluster. This approach ensures that clusters 
are combined based on their proximity, leading to 
more accurate cluster identification. Furthermore, 

the more data in the K-Means algorithm, the better 
centers are generated. Therefore, in order to achieve 
desired results in the basic algorithm (Spark-
CluStream), micro-clusters are sampled to increase 
the data quantity, which in turn incurs additional 
costs. However, the proposed algorithm addresses 
this challenge by conducting clustering operations in 
proportion to the available micro-clusters. 

Figure 1 demonstrates the merging of 
overlapping clusters. In the first line, the micro-
clusters are converted into RDDs after creation, to 
be automatically distributed to different nodes by 
Spark and enable parallel processing.  From lines 2 
to 7, the closest neighbor is identified for each 
micro-cluster, and if the overlap criterion is 
satisfied, its identifier is returned.  Line 8 involves 
merging the identifiers of overlapping clusters into a 
single identifier. This operation is performed by 
traversing the graph with the BFS algorithm on the 
adjacency matrix. In line 9, clusters with the same 
identifier are merged. Finally, the number of micro-
clusters is returned in line 10, and the final micro-
cluster centers are returned in line 11. 

5. Results and Descussion  

In this section, we present the results of 
experiments conducted to assess the clustering 
quality and speed. Furthermore, we examine the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1. DynamicCluStream in offline phase 

Input: microClusters: get list of microClusters 

1: create a data frame to process micro-clusters in 

parallel. 

2:  for  all  mc ∈ microClusters   do  

3:        find the nearest micro-cluster to mc 

4:            if dist (mci, mcj) ≤ mcj. rmsd 

5:                    microClusters ← (mc, nearest micro-

cluster) 

6:           else 

7:                      microClusters ← (mc, -1) 

8:          end if 

9:   end for 

10: using the BFS algorithm, change the overlapping 

micro-clusters
,
 identifiers to a unique identifier. 

11: merge all micro-clusters with the same identifier 

12: K ← size of microClusters 

13: lCentroids ← microClusters.centroids 
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performance of DynamicCluStream in comparison 
to Spark-CluStream using real-world datasets. 

5.1. Experimental setup and configuration 

The algorithm described above has been 
implemented within the Apache Spark framework, 
specifically as a stream in Spark Streaming. All 
experiments were conducted on a Windows 10 
device with a Core i5 processor and 16GB of 
memory. To evaluate the algorithm's performance, 
three real-world datasets were utilized: Cover Type1, 
Power Supply2 and KddCup993. These datasets are 
described in Table 1. 

The Cover Type dataset used for predicting 
different types of forest cover across various regions 
in the United States. Each sample in the dataset 
consists of fifty-four features related to forest cover 
information. The Power Supply dataset representing 
hourly power supply data from an electricity 
company in Italy. It includes power readings from 
two sources: power from the main grid and from 
other transformed grids. Each sample in the dataset 
contains two features. The dataset covers a three-
year period, from 1995 to 1998, capturing the power 
supply records. The KDDCup99 dataset is one of the 
most popular datasets used for testing stream 
clustering algorithms. This dataset comprises non-
uniformly distributed network traffic data records. It 
consists of 41 attributes, of which 34 are numerical 
features describing the connection. The class label 
indicates whether the connection is normal or one of 
the 22 types of network attacks. In line with 
convention, this paper utilizes the 10 percent subset 
of the original dataset, which contains 23 classes, 34 
numerical features, and 494,021 instances. 

It is worth noting that the data were standardized 
using the standardization function available in 
Apache Spark. This step was taken to ensure that the 
inclusion of data with different scales does not 
adversely impact the algorithm's accuracy. The 
initialization of the algorithm used N = 2000 data 
samples, with a data sample entry rate of N = 1000 
per second. The window size was set to R = 4 or R = 
6, and the number of micro-clusters was specified as 
q = 10K. 

Table 1: Description of the real datasets 

Dataset Type Instance Dimension Class 

CoverType Real 581,012 54 7 

PowerSupply Real 29,938 2 24 

KddCup99 Real 4,898,431 41 23 

 
1  https://archive.ics.uci.edu/ml/datasets/covertype 
2 https://www.cse.fau.edu/~xqzhu/stream.html 
3 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 

5.2. Clustering quality 

One of the most frequent criteria used for 
internal evaluation of clustering quality is the sum of 
squared distances, which has been used in this paper 
for analysis of the favorability of the proposed 
algorithm. This index measures the similarity among 
members within a cluster by computing the 

Euclidean distance between a data point (Xi) and its 

closest cluster center (Cxi). SSQ is calculated using 

Equ(6). 

                        (6) 

5.3. Clustering speed 

Another appropriate criterion used for the 
evaluation of the algorithm is clustering speed, 
which can be calculated by measuring the execution 
time of the algorithm. In other words, the time 
required for processing a group of data indicates the 
algorithm speed. 

5.4. Comparision with the basic Spark-

Clustream 

In this section, we compare the proposed 
algorithm to the original algorithm using the criteria 
introduced in the previous section. Figures 2,3,4 and 
5 depict the clustering quality of Spark-CluStream 
and DynamicCluStream across sliding windows of 
different sizes and the number of final clusters. Each 
algorithm was run four times, and the average sum 
of squares was calculated to generate the diagrams 
in each figure. The results demonstrate that the 
proposed algorithm consistently outperforms Spark-
CluStream in terms of clustering performance across 
different datasets. On average, the proposed 
algorithm achieved up to a 47% increase in accuracy 
for the Cover Type dataset and up to a 92% increase 
for the Power Supply dataset. Figure 5 reveals that 
the results obtained for the Power Supply dataset are 
always better than those for the Cover Type dataset. 
This is because the Power Supply dataset follows a 
uniform distribution. 

The original algorithm aims to generate a fixed 
number of clusters, K, in the offline phase, which 
leads to the merging of clusters with different labels 
and a decrease in result quality. In contrast, the 
proposed method allows clusters to merge in the 
offline phase when necessary and eliminates the 
need to generate a predetermined number of 
clusters. This approach prevents the merging of 
clusters with different labels. 

Figures 6 and 7 present the mean running time of 
DynamicCluStream and Spark-CluStream for 
various values of K. In both experiments, the time  

https://www.cse.fau.edu/~xqzhu/stream.html
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Figure. 2. Results for the CoverType dataset with parameters N 

= 1000, R = 4, and K = 5 

 

 

Figure. 3. Results for the Power Supply dataset with parameters 

N=1000, R= 4, and K = 5 

 

Figure. 4. Results for the Cover Type dataset with parameters 

N=1000, R= 6, and K = 10 

spent on algorithm initialization has been ignored. 
The figures indicate that the execution time of the 
algorithms for each dataset increases gradually as 
the value of K rises. However, Spark-CluStream 
exhibits a relatively minor increase in execution 
time since it generates a fixed number of clusters. 
On the other hand, the proposed method experiences 
increased execution time due to the varying number 
of clusters and the removal of expired clusters from 
the sliding window. Furthermore, the integration of 
overlapping clusters in the offline phase has also 
increased the execution time of the algorithm. 

 Time complexity of the specifying the number 

of clusters in the offline phase 

The proposed algorithm begins by identifying the 

 

Figure. 5.  Results for the Power Supply dataset with parameters 

N=1000, R=6, and K=10 

 

Figure. 6. Processing time for the CoverType dataset 

 

Figure. 7. Data processing time over the Power Supply dataset 

closest neighbor for each micro-cluster. If the 
overlap criterion is satisfied, the algorithm returns 
the identifier of the closest neighbor. However, if a 
cluster does not overlap with any others, the 
algorithm returns a value of -1. With the assumption 
that the number of micro-clusters is q, the cost of 
finding overlapping clusters is of O(q2). Next, the 
identifiers of clusters located within the other's 
boundaries are changed to a single identifier. This 
process is accomplished by employing the BFS 
algorithm on the adjacency matrix representation of 
the graph. The size of the matrix is determined based 
on the number of overlapping micro-clusters. 
Assuming v represents the number of overlapping 
micro-clusters and graph vertices, the time 
complexity of traversing the graph is O(v2). In the 
best-case scenario where no cluster overlaps exist, 
the processing time and the cost remain constant. 
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Finally, the micro-cluster centers are returned as the 
number of clusters. The overall time complexity of 
the algorithm is O(q2 + v2). However, if the time 
complexity of traversing the graph is constant, 
meaning O(1) for v2, the complexity is reduced to 
O(q2). 

 Comparison of the proposed algorithm to the 

original one  

The proposed algorithm demonstrates superior 
performance compared to the original algorithm, 
which utilizes K-Means in the offline phase, in 
terms of quality and cost. In terms of quality, the 
proposed method has performed better than K-
Means in most cases.  

However, in some time units, the proposed 
algorithm may not perform well in terms of quality 
because the length of the window may not be 
selected properly. In the sliding window model, the 
result of clustering is strongly influenced by size of 
the window, so the proper sizing of the window 
directly impacts clustering quality. Therefore, the 
clustering precision may decrease, particularly when 
utilizing a smaller window size. Furthermore, in 
datasets with a high rate of data change, the length 
of the window should be chosen more carefully [5]. 

Regarding cost during the offline phase, it 
presents lower costs for two primary reasons: firstly, 
the cost of the proposed method is deterministic, and 
secondly, it is proportional to the number of micro-
clusters rather than the main data. 

 The deterministic nature of the proposed 
algorithm means that its execution time over a 
specific series of input data is always a constant 
number. Therefore, the variance of its termination 
time is always zero. On the other hand, K-Means is 
non-deterministic due to its iterative nature, 
requiring multiple iterations for convergence. 
Consequently, it exhibits varying execution times 
for a specific series of input data, leading to higher 
costs compared to the proposed algorithm. 

 As mentioned earlier, the proposed algorithm 
performs clustering in proportion to the available 
micro-clusters. In contrast, K-Means benefits from a 
larger amount of data, leading to improved cluster 
centers. Therefore, the micro-clusters are sampled to 
obtain favorable results in the basic algorithm 
(Spark-CluStream) and thus increase the number of 
data, which in turn raises the cost. It is important to 
note that the proposed algorithm occasionally 
utilizes the BFS algorithm to identify overlapping 
clusters with identical identifiers. This inclusion 
increases the time complexity of the proposed 
algorithm.  

Table 2 shows the average percentage 
improvement of the proposed algorithm 
(DynamicCluStream) as compared to the basic 

algorithm (Spark-CluStream) with the internal 
evaluation criterion (SSQ). 

5.5. Comparosion to the other works 

In this section, we compared our proposed 
method with recent data stream clustering 
algorithms: SWClustering, StreamKM++, CSCS, 
SClustream, all of which is described in Section 2. 
To evaluate the clustering quality, we use the Sum 
of Squared Distance (SSQ) criteria. 

  Table 3 presents the average SSQ results with 
various datasets by each method. 
DynamicClustream has consistently get the best 
results compared to other algorithms on all three 
datasets. It accurately assigns data to appropriate 
clusters, resulting in the highest performance. 

All algorithms except StreamKM++ utilize the 
sliding window model. The StreamKM++ algorithm 
shows almost the same quality as the CSCS 
algorithm in the cover type dataset. It appears that 
the k-means algorithm works well to find good 
initial centers. However, this operation is time-
intensive [29]. The SClustream algorithm provides a 
lower quality compared to other algorithms in the 
CoverType dataset. It is probably because this 
algorithm only reported the clustering results during 
the online phase. On the kddCup99 dataset, the 
SWClustering algorithm has provided better results 
than the rest of the algorithms, however, the 
proposed method consistently delivers superior 
results across all the three datasets. 

Approximate results of the StreamKM++ 
algorithm on both the CoverType and KddCup99 
datasets, as well as the SWclustering algorithm on  

Table 2: Precision improvement of the DynamicClustream over 

Spark Clustream 

Dataset Config 
Spark-

Clustream 

Dynamic-

Custream 

Improved 

(%) 

CoverType 
N=1000, R=4, 

K=5 
237591 .1 125205 .8 45% 

PowerSupply 
N=1000, R=4, 

K=5 
361.277 33.5373 92% 

CoverType 
N=1000, R=6, 

K=10 
253426.3 138723.4 47% 

PowerSupply 
N=1000, R=6, 

K=10 
839.4457 59.60009 90% 

Table 3: Average SSQ results of compared methods on real 

datasets 

Method CoverType KddCup99 PowerSupply 

StreamKM++ ≈ 3.47E+09 ≈ 2.50E+11 - 

SClustream ≈ 3.00E+12 - - 

SWclustering ≈ 9.63E+09 ≈ 1.59E+08 - 

CSCS ≈ 2.13E+09 ≈ 6.67E+10 - 

Dynamic-

Clustream 
2.38E+05 2.91E+05a 3.61E+02 

a as usual, the experiment is done using the 10 percent subset of the original 
dataset. 
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the CoverType dataset, are obtained from reference 
[29]. Results for the remaining algorithms are from 
their respective references. 

6. Conclusion 

In this paper, a highly efficient algorithm called 
DynamicCluStream was introduced to cluster big 
data streams. The proposed algorithm is an 
improvement over Spark-CluStream, which is 
implemented within the Apache Spark framework. 
DynamicCluStream generates clusters from a sliding 
window and dynamically detects the number of final 
clusters in the offline phase by aggregating 
overlapping clusters. This dynamic approach 
significantly enhances the performance of clustering. 
In contrast, Spark-CluStream statically specifies the 
number of final clusters based on the K-Means 
algorithm, which reduces the quality of the final 
clusters. Experimental evaluations were conducted 
on real-world datasets, including coverType, 
powerSupply, and kddCupp99. These evaluations 
demonstrated that the proposed algorithm 
outperforms Spark-CluStream and other algorithms 
in terms of clustering quality. However, the speed of 
the proposed algorithm has reduced due to the costly 
operations of removal and merging. 

In future works, we will focus on the 
improvement of the proposed algorithm for more 
efficient and timely clustering. Another suggestion 
involves finding solutions for outlier and noise 
detection to improve the quality of the induced 
clusters. 
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